LINEAR ALGEBRA WORKSHEET 5

MATH1014 SPRING SESSION

(1) Find all eigenvalues of the matrix. Is the matrix diagonalisable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

$$
A=\left[\begin{array}{ccc}
0 & -1 & -1 \\
1 & 2 & 1 \\
-1 & -1 & 0
\end{array}\right]
$$

(2) (a) Suppose that A is diagonalisable and has only one eigenvalue λ. Explain why $A=\lambda I$.
(b) Is the matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

diagonalisable?
(3) Which of the following are possible for a 3×3 matrix? If it's impossible, explain why. If it's possible, give an example.
(a) A has exactly two distinct eigenvalues and is diagonalisable
(b) B has exactly four distinct eigenvalues and is diagonalisable
(c) C has exactly three distinct eigenvalues and is not diagonalisable
(d) D has exactly two distinct eigenvalues and is not invertible.
(4) For which values of t does the matrix

$$
\left[\begin{array}{ll}
1 & t \\
2 & 3
\end{array}\right]
$$

have two distinct eigenvalues? (Hint: a quadratic equation $a x^{2}+b x+c=0$ has two different real solutions exactly when $b^{2}>4 a c$).

