LINEAR ALGEBRA WORKSHEET 6

MATH1014 SPRING SESSION

- (1) Suppose $T: V \to W$ is a linear transformation, $\mathscr{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ is a basis for *V*, and $\mathscr{C} = {\mathbf{c}_1, \mathbf{c}_2}$ is a basis for *W*. If the matrix of *T* with respect to \mathscr{B} and \mathscr{C} is
 - $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 5 \end{bmatrix}$

then find $T(\mathbf{b}_1 - \mathbf{b}_3)$ in terms of \mathbf{c}_1 and \mathbf{c}_2 .

- (2) Consider the linear transformation T : P₂ → P₂ given by T(p(t)) = p(t) + tp'(t) + p''(t). Fix the standard basis ℬ = {1, t, t²} for P₂.
 (a) Find [T]_ℬ.
 - (b) Does there exist a non-zero polynomial q in \mathbb{P}_2 such that T(q) = 3q? If so, find one.
- (3) The matrix $B = \begin{bmatrix} 0.4 & -0.3 \\ 0.4 & 1.2 \end{bmatrix}$ has eigenvectors $\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$. Use diagonalisation to explain why B^k approaches $\begin{bmatrix} -0.5 & -0.75 \\ 1.0 & 1.5 \end{bmatrix}$ as $k \to \infty$.

(4) Find the eigenvalues and eigenspaces of the matrix $A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}$.