LINEAR ALGEBRA WORKSHEET 6

MATH1014 SPRING SESSION

(1) Suppose $T: V \rightarrow W$ is a linear transformation, $\mathscr{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ is a basis for V, and $\mathscr{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ is a basis for W. If the matrix of T with respect to \mathscr{B} and \mathscr{C} is

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 5
\end{array}\right]
$$

then find $T\left(\mathbf{b}_{1}-\mathbf{b}_{3}\right)$ in terms of \mathbf{c}_{1} and \mathbf{c}_{2}.
(2) Consider the linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ given by $T(p(t))=p(t)+t p^{\prime}(t)+p^{\prime \prime}(t)$. Fix the standard basis $\mathscr{B}=\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2}.
(a) Find $[T]_{\mathscr{B}}$.
(b) Does there exist a non-zero polynomial q in \mathbb{P}_{2} such that $T(q)=3 q$? If so, find one.
(3) The matrix $B=\left[\begin{array}{cc}0.4 & -0.3 \\ 0.4 & 1.2\end{array}\right]$ has eigenvectors $\mathbf{u}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-3 \\ 2\end{array}\right]$. Use diagonalisation to explain why B^{k} approaches $\left[\begin{array}{cc}-0.5 & -0.75 \\ 1.0 & 1.5\end{array}\right]$ as $k \rightarrow \infty$.
(4) Find the eigenvalues and eigenspaces of the matrix $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$.

