Math 110, Fall 2012, Sections 109-110 Worksheet 12

- 1. True or false? Assume V is a finite-dimensional inner product space over \mathbb{C} and that T is a linear operator on V.
 - (a) If T is self-adjoint and β is a basis for V, then $[T]_{\beta}$ is self-adjoint.
 - (b) If x is an eigenvector for T, then x is also an eigenvector for T^* .
 - (c) If T and S are self-adjoint, then T + S is self-adjoint.
 - (d) If T is self-adjoint and $c \in F$, then cT is self-adjoint
 - (e) If T and S are normal, then T + S is normal.
 - (f) If T is normal and $c \in F$, then cT is normal.
- 2. Let T be a normal operator on a complex finite-dimensional inner product space V. Prove that T is self-adjoint if and only if all the eigenvalues of T are real numbers.
- 3. Suppose that $A \in M_{n \times n}(\mathbb{C})$. Prove that $A^*A = I_n$ if and only if the columns of A form an orthonormal basis for \mathbb{C}^n .
- 4. Let T be a self-adjoint linear operator on an inner product space V. Suppose W is a T-invariant subspace of V. Prove that W^{\perp} is also T-invariant.