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1. Let V be a real inner product space.

(a) (The Polarization Identity) Prove that for all x, y ∈ V we have

〈x, y〉 =
1

4

(
‖x+ y‖2 − ‖x− y‖2

)
.

(b) Prove that if U is a linear operator on V such that ‖Ux‖ = ‖x‖ for all
x ∈ V , then U is unitary. (Informally, this exercise says that “If a lin-
ear operator preserves lengths, then it also preserves angles.” A similar
exercise can be done for complex inner product spaces, but the complex
version of (a) has more terms. See Exercise 6.1.20(b))

Solution:

(a) Observe that

‖x+ y‖2−‖x− y‖2 = 〈x+y, x+y〉−〈x−y, x−y〉 = 2〈x, y〉+ 2〈y, x〉 = 4〈x, y〉

since F = R.

(b) We have

4〈Ux, Uy〉 = ‖U(x+ y)‖2 − ‖U(x− y)‖2 = ‖x+ y‖2 − ‖x− y‖2 = 4〈x, y〉

for all x, y ∈ V , so U is unitary.

2. (The Cartesian Decomposition) Prove that if T is a linear operator on a finite-
dimensional, complex inner product space V , then there exist unique self-adjoint
operators A and B such that T = A + iB. Hint: how did we write any matrix
as the sum of a symmetric and a skew-symmetric matrix? (This is an operator
version of the fact that complex numbers can be written as x + iy with x and
y real numbers.)

Solution: Note that A = 1
2
(T + T ∗) and B = − i

2
(T − T ∗) are self-adjoint, and

that T = A+ iB.

To prove uniqueness, suppose T = A′+iB′ as well. Then 0 = (A−A′)+i(B−B′).
Taking adjoints yields 0 = (A−A′)− i(B −B′), and adding the two equations
gives 2(A−A′) = 0. Thus A = A′. Now substituting above yields 0 = i(B−B′),
so B = B′. It follows that the A and B given above are unique.



3. (Positive operators and square roots) A self-adjoint operator A on an inner
product space V is called positive semi-definite if 〈Ax, x〉 ≥ 0 for all x ∈ V . In
the following, assume V is finite-dimensional.

(a) If T is any linear operator on V , prove that T ∗T is positive semidefinite.

(b) Prove that if A is self-adjoint, then A is positive semidefinite if and only
if all of its eigenvalues are non-negative real numbers (i.e. real numbers
λ ≥ 0)

(c) Prove that if A is positive semidefinite, then there exists a unique positive
semidefinite operator B such that B2 = A. (Informally, this proves that
“positive operators have unique positive square-roots.” One can therefore
talk unambiguously about A

1
2 if A is positive semi-definite.)

Solution:

(a) We have 〈T ∗Tx, x〉 = 〈Tx, Tx〉 = ‖Tx‖2 ≥ 0.

(b) If A is self-adjoint but has a negative eigenvalue λ, then if x is an eigenvector
with eigenvalue λ we have

〈Ax, x〉 = λ〈x, x〉 < 0

so A is not positive semidefinite.

Conversely, suppose A has all non-negative eigenvalues. Since A is self-adjoint,
it has an orthonormal basis x1, . . . , xn of eigenvectors with not necessarily dis-
tinct eigenvalues λ1, . . . , λn. Given x ∈ V , it an be written

x = c1x1 + · · ·+ cnxn.

We then have

〈Ax, x〉 =
n∑

i,j=1

cicj〈Axi, xj〉 =
n∑

i,j=1

cicjλi〈xi, xj〉 =
n∑
i=1

|ci|2 λi ≥ 0

(c) If A is positive semidefinite, then we can write V = Eλ1 ⊕ · · · ⊕ Eλk where
λ1, . . . λk are the distinct (nonnegative) eigenvalues of A. That is, any x ∈ V
can be written uniquely as v1 + · · · vk with vi ∈ Eλi . Define an operator S by

S(v1 + · · ·+ vk) = λ
1
2
1 v1 + · · ·+ λ

1
2
k vk,



where the nonnegative square root of nonnegative real numbers is used. S is
well-defined by the uniqueness of the decomposition, and linearity is straight-
forward to check.

If {xi} is any orthonormal basis of eigenvectors of A, then each xi is also an
eigenvector of S by construction, so S possess an orthonormal basis of eigenvec-
tors. Thus S is normal, and by construction has all nonnegative eigenvalues, so
S is positive semidefinite. We have

S2(v1 + · · ·+ vk) = λ1v1 + · · ·+ λkvk = A(v1 + · · ·+ vk),

so S2 = A is a positive semidefinite square root.

To prove uniqueness, suppose that we have some other positive operator S ′ such
that (S ′)2 = A. Since S ′ is positive semidefinite, there exists an orthonormal
basis y1, . . . , yn such that S ′(yj) = µjyj with µj ≥ 0. We then have

A(yj) = (S ′)2(yj) = µ2
jyj.

So each yj is an eigenvector of A, and thus an eigenvector of S (since the two
were constructed to have the same eigenspaces). If Syj = µyj, then

A(yj) = S2(yj) = µ2(yj).

Thus µ2 = µ2
j , and since both µ and µj are nonnegative, we have µ = µj. Thus

S(yj) = S ′(yj). Since yj was an arbitrary element of a basis, we must have
S = S ′, proving uniqueness.

4. (Polar decomposition) Let V be a finite-dimensional inner product space, and

let T be a linear operator on V . Define the absolute value of T by |T | = (T ∗T )
1
2 ,

which makes sense by the previous exercise.

(a) Prove that ‖Tx‖ = ‖|T |x‖ for all x ∈ V .

(b) Prove that if T is invertible, then there exists a unique unitary operator U
such that T = U |T |. (This is an analog of the fact that non-zero complex

numbers can be written z = eiθr where r = (zz)
1
2 is positive.)

Solution:

(a) We have

‖Tx‖2 = 〈Tx, Tx〉 = 〈T ∗Tx, x〉 = 〈|T |2 x, x〉 = 〈|T |x, |T |x〉 = ‖|T |x‖2 .



(b). Since T is invertible, we have N(T ) = {0}. But (a) says T (x) = 0 ⇐⇒
|T | (x) = 0, so N(|T |) = {0} as well. Thus |T | is invertible. Let U = T |T |−1.
By construction, we have T = U |T |. It remains to show that U is unitary.

We will assume exercise 1(b) for complex inner product spaces, which wasn’t
proven. It is very similar to the real case. See the references exercise from
the book. With that assumption, it suffices to prove that ‖Ux‖ = ‖x‖ for all
x ∈ V . Since U is unitary if and only if U−1 is unitary, we will actually prove
‖U−1x‖ = ‖x‖ for all x. We have∥∥U−1x∥∥ =

∥∥|T |T−1x∥∥ =
∥∥TT−1x∥∥ = ‖x‖ ,

where in the second equality we used part (a). Thus U−1, and therefore U , are
unitary.

All that remains to prove is uniqueness, but that is is as if T = U ′ |T |, then it
follows immediately that U ′ = T |T |−1.


