
Math 110, Fall 2012, Sections 109-110
Worksheet 1

1. Let V be a vector space over a field F . Carefully prove the following statement using
only the axioms of vectors spaces and fields: Suppose a ∈ F and b ∈ V . Then ab = 0
if and only if a = 0 or b = 0.

2. Why is the following question ill-posed (i.e. why doesn’t it make any sense): “Let V
be the set of cows in California. Is V a vector space over F7?”

3. Are the following vector spaces over R?

(a) The set of all real 2× 2 matrices of the form(
a 2
2 b

)
with the usual matrix addition and scalar multiplication.

(b) The set of all real 2× 2 matrices of the form(
a a+ b

a+ b b

)
with the usual matrix addition and scalar multiplication.

(c) The set of all real 2× 2 matrices of the form(
a2 a
b 0

)
with the usual matrix addition and scalar multiplication.

4. Consider the subspaces of Mn×n(F ) consisting: W0, consisting of traceless matrices,
W1 consisting of matrices (aij) with aii = 0 for all i, and W2 consisting of all strictly
upper triangular matrices. Prove that W2 ⊆ W0 ∩W1.

5. Let W1 = {(α, α) : α ∈ R} and let W2 = {(β,−β) : β ∈ R}. Prove that R2 = W1⊕W2.



1) Suppose first that ab = 0. It suffices to prove that if a 6= 0, then b = 0. Since a 6= 0,
there exists an element a−1 ∈ F with aa−1 = 1. Multiplying both sides of ab = 0 by a−1 on
the left, we get a−1(ab) = a−10. By (VS6), we have (a−1a)b = a−10. Since a−1a = 1, (VS5)
says that b = a−10. All that remains is to show that a−10 = 0. That will follow from the
mini-problem:

Suppose c ∈ F and 0 is the zero vector in some vector space over F . Then c0 = 0. Proof:
By (VS3) and (VS7), we have c0 = c(0 + 0) = c0 + c0. Now adding −(c0) (which exists
by (VS4)) to both sides on the right gives c0 + (−c0) = (c0 + c0) + (−c0). By (VS4) the
left-side becomes 0, and by (VS2) and (VS4) the right side becomes c0 + 0. Applying (VS3)
now gives c0 = 0.

Conversely, suppose a = 0 or b = 0, and we will show that ab = 0. We proceed in two cases.
In the first case, suppose b = 0. Then ab = a0 = 0 by the mini-problem we proved in the
previous part. The other case (proving 0b = 0) is similar, and left to you.

2) It doesn’t make sense to ask if a set is a vector space without specifying the operations.

3) All of these examples are subsets of V = M2×2(R) being given with the same operations as
on V . A theorem from class says that such a subset is a vector space under those operations
if and only if it is a subspace of V .

a) Not a subspace, and therefore not a vector space. It fails all three axioms, but it suffices
to note that the zero matrix is not an element.

b) This is a subspace. Call it W2. First, we check that W2 contains the zero matrix. Observe
that the zero matrix is of the given form, with a = b = 0. Next we take C,D ∈ W2 and show
that C +D = W2. Since C,D ∈ W2 we can write them as

C =

(
a1 a1 + b1

a1 + b1 b1

)
, D =

(
a2 a2 + b2

a2 + b2 b2

)



for some real numbers a1, a2, b1, and b2. Then

C +D =

(
a1 + a2 (a1 + a2) + (b1 + b2)

(a1 + a2) + (b1 + b2) b1 + b2

)
.

Thus C +D is of the given form, with a = a1 + a2 and b = b1 + b2, and so C +D ∈ W2.

Finally, let C be as above and let x be a real numbers. We must show that xC ∈ W2. We
have

xC = C =

(
xa1 xa1 + xb1

xa1 + xb1 xb1

)
.

This is of the given form with a = xa1 and b = xb1. Thus xC ∈ W2 and we have shown that
W2 is a subspace of V . By the note at the start, this means W2 is a vector space with the
given operations.

c) Not a subspace, and therefore not a vector space by the comment at the beginning. To
see that it’s not a subspace, note that

A =

(
1 1
0 0

)
is in the set, but A+ A is not.

4) Let A = (aij) ∈ W2. Then we must show that A ∈ W0 and A ∈ W1. Since A ∈ W2, we
know aij = 0 whenever i ≥ j. Thus, in particular aii = 0 for all i. By definition, this means
A ∈ W1. We also have

n∑
i=1

aii =
n∑

i=1

0 = 0,

and so A ∈ W0. Thus A ∈ W0 ∩W1, which was to be shown.

5) There are two parts: we must show that W1 ∩W2 = {0} and that W1 + W2 = R2. To
show two sets A and B are equal, it is often helpful to prove that A ⊆ B and B ⊆ A. This
is what we do here.

First we set out to prove W1 ∩W2 = {0}. Note that {0} ⊆ W1 ∩W2, since 0 ∈ W1 and
0 ∈ W2. Conversely, we must show that W1 ∩W2 ⊆ {0}. Let x = (x1, x2) ∈ W1 ∩W2. Then
x1 = x2 because x ∈ W1. But x1 = −x2 because x ∈ W2. Adding equations gives 2x1 = 0,



and thus x1 = 0. Since x1 = x2, this means x2 = 0 so x = (0, 0). Thus x ∈ {0}, which
completes the proof that W1 ∩W2 = {0}.

We now have to show that W1 + W2 = R2. As before, we show that both sides are subsets
of each other. The easy direction first:

We first prove W1 + W2 ⊆ R2. Let x ∈ W1 + W2. By definition, there exist y ∈ W1 and
z ∈ W2 with y + z = x. Since Wi ⊆ R2, we know y, z ∈ R2. Thus z = y + z ∈ R2, and we
have shown that W1 +W2 ⊆ R2.

Conversely, we must also prove that R2 ⊆ W1 + W2. Let x = (x1, x2) ∈ R2. We must find
elements y ∈ W1 and z ∈ W2 with y + z = x to show that x ∈ W1 +W2.

[Parenthetical remark: we’d now go off on scratch paper and try to figure out what those
are. I’ll show you my “scratch paper” after the proof]

Indeed, if

y =

(
1

2
(x1 + x2),

1

2
(x1 + x2)

)
, z =

(
1

2
(x1 − x2),

1

2
(x2 − x1)

)
then y ∈ W1 and z ∈ W2. We also have y + z = x, and so x ∈ W1 + W2. Thus we have
shown that R2 ⊆ W1 +W2, which completes the proof.

Now, you’d reasonably be asking where y and z came from. Notice that how I found them
isn’t part of the proof. But it’s important to know where they came from, so here’s my
scratch paper that isn’t part of the proof:

If I had elements y = (α, α) and z = (β,−β) then x = y + z is equivalent to

α + β = x1

α− β = x2.

Using the techniques of Section 1.4, this linear system can be solved to get α = 1
2
(x1 + x2)

and β = 1
2
(x1 − x2).

To take away from this problem: notice how I showed that A = B by showing A ⊆ B and
B ⊆ A. Each of those two subproblems can be solved by taking an arbitrary element in
one set, and showing that it is in the other. The answer to 5 is long, but most of it is



just technical things that you can get for free. This method of showings sets are equal isn’t
always the easiest way to do things, but it is a good thing to try. Other tricks will build off
of this fundamental one.


