Math 110, Fall 2012, Sections 109-110 Worksheet 2

- 1. Prove that if $\{A_1, A_2, \ldots, A_k\}$ is a linearly independent subset of $M_{n \times n}(F)$ then so is $\{A_1^t, \ldots, A_k^t\}$.
- 2. Determine if the statement is true or false, and justify your answer. Let S and T be subsets of a vector space V.
 - (a) If S is linearly independent and $S \subset T$, then T is linearly independent.
 - (b) If S is linearly dependent and $S \subset T$, then T is linearly dependent.
 - (c) If S spans V and $S \subset T$, then T spans V.
 - (d) If S does not span V and $S \subset T$, then T does not span V.
- 3. Let V be a vector space. Assume $u, v, w \in V$ and u + v + w = 0. Let $W_1 = \text{span}\{u, v\}$ and $W_2 = \text{span}\{u, w\}$. Is $W_1 = W_2$? Prove your answer.
- 4. (a) As a subset of the vector space \mathbb{R}^3 , is $\{(2,4,1), (2,3,4)\}$ linearly independent or linearly dependent?
 - (b) Compute 4(2, 4, 1) (1, 2, 4) in $\mathbb{Z}/7$ and comment.
- 5. Let V be the real vector space of functions from \mathbb{R} to \mathbb{R} with pointwise addition and scalar multiplication. Let $f, g, h \in V$ be the elements $f(x) = e^x$, $g(x) = \cos(x)$, and $h(x) = \sin(x)$. Is $f \in \operatorname{span}\{g, h\}$?