Math 110, Fall 2012, Sections 109-110 Worksheet 4

- 1. Let V and W be vector spaces with dim V = n and dim W = m, and let β and γ be ordered bases for V and W, respectively. Suppose $v \in V$, and let $T : V \to W$ be a linear transformation.
 - (a) In what space do the following expressions live?
 - i. T(v)ii. $[v]_{\beta}$ iii. $[T]_{\beta}^{\gamma}$ iv. $[T]_{\beta}^{\gamma}[v]_{\beta}$ v. T(v)
 - (b) What is wrong with the following expressions?
 - i. $T([v]_{\beta})$ ii. $[v]_{\gamma}$ iii. $[T]_{\beta}^{\gamma}v$ iv. $[T(v)]_{\beta}^{\gamma}$
- 2. Suppose V and W are vector spaces with bases $\beta = \{v_1, v_2, v_3\}$ and $\gamma = \{w_1, w_2\}$, respectively. Suppose

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{pmatrix}.$$

- (a) What is $T(v_1 + v_2 + v_3)$?
- (b) If $\beta' = \{v_1, v_2, v_1 + v_2 + v_3\}$, what is $[T]_{\beta'}^{\gamma}$? (You may assume that β' is a basis for V, but you should also know how to prove it)
- 3. Let $T: V \to V$ be a linear transformation. What is the relationship between N(T) and $N(T^2)$? What is the relationship between R(T) and $R(T^2)$?
- 4. Let V and W be vector spaces over a field F and let $\mathcal{L}(V, W)$ denote the set of linear transformations from V to W. How do we define addition and scalar multiplication in $\mathcal{L}(V, W)$? How would you show that $\mathcal{L}(V, W)$ is a vector space under these operations?