Math 110, Fall 2012, Sections 109-110 Worksheet 4

- 1. Let V and W be vector spaces over a field F with dim V = n and dim W = m. Let β and γ be ordered bases for V and W, respectively. Suppose $v \in V$, and let $T: V \to W$ be a linear transformation.
 - (a) In what spaces do the following expressions live?
 - i. T(v)ii. $[v]_{\beta}$
 - \cdots $[\sigma]^{2}$
 - iii. $[T]^{\gamma}_{\beta}$
 - iv. $[T]^{\gamma}_{\beta}[v]_{\beta}$
 - (b) What is wrong with the following expressions?
 - i. $T([v]_{\beta})$
 - ii. $[v]_{\gamma}$
 - iii. $[T]^{\gamma}_{\beta}v$
 - iv. $[T(v)]^{\gamma}_{\beta}$
- 2. Suppose V and W are vector spaces with bases $\beta = \{v_1, v_2, v_3\}$ and $\gamma = \{w_1, w_2\}$, respectively. Suppose

$$[T]^{\gamma}_{\beta} = \begin{pmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \end{pmatrix}.$$

- (a) What is $T(v_1 + v_2 + v_3)$?
- (b) If $\beta' = \{v_1, v_2, v_1 + v_2 + v_3\}$, what is $[T]_{\beta'}^{\gamma}$? (You may assume that β' is a basis for V, but you should also know how to prove it)
- 3. Let $T: V \to V$ be a linear transformation. What is the relationship between N(T) and $N(T^2)$? What is the relationship between R(T) and $R(T^2)$?
- 4. Let V and W be vector spaces over a field F and let $\mathcal{L}(V, W)$ denote the set of linear transformations from V to W. How do we define addition and scalar multiplication in $\mathcal{L}(V, W)$? How would you show that $\mathcal{L}(V, W)$ is a vector space under these operations?
- 1. (a) i. W, ii. F^n , iii. $M_{m \times n}(F)$, iv. F^m

(b)

i. $[v]_{\beta} \in F^n$, which is not the domain of T.

ii. $v \in V$ but γ is a basis for W

iii. $[T]^{\gamma}_{\beta}$ is a matrix, and there is no general way to multiply a matrix by an element of a vector space

iv. T(v) is an element of W, whereas $[S]^{\gamma}_{\beta}$ is only defined for S a linear transformation.

2. We have

$$[T(v_1 + v_2 + v_3)]_{\gamma} = [T]_{\beta}^{\gamma} [v_1 + v_2 + v_3]_{\beta} = [T]_{\beta}^{\gamma} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 6\\15 \end{pmatrix}$$

Thus $T(v_1 + v_2 + v_3) = 6w_1 + 15w_2$.

3. If T(x) = 0, then $T^2(x) = T(T(x)) = T(0) = 0$, so if $x \in N(T)$ then $x \in N(T^2)$. That is, $N(T) \subseteq N(T^2)$.

If $y \in R(T^2)$, then there is some $x \in V$ with $T^2(x) = y$. That is, T(T(x)) = y. If x' = T(x), then T(x') = y so that $y \in R(T)$. Thus if $y \in R(T^2)$ then $y \in R(T)$, so that $R(T^2) \subseteq R(T)$.

4. If $T, S \in \mathcal{L}(V, W)$, then we define T + S by (T + S)(x) = T(x) + T(y). Similarly if $c \in F$ we define (cT)(x) = cT(x). If one had already proven that for any set X, the set of functions from S to W, $\mathcal{F}(S, W)$, was an F-vector space with the same operations given, then you could prove that $\mathcal{L}(V, W)$ was a subspace of $\mathcal{F}(S, W)$. Otherwise, one would have to verify the vector space axioms.