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Math 110, Fall 2012, Sections 109-110
Worksheet 5

. Let A and B be n x n matrices such that AB is invertible. Prove that A and B are
invertible. Give an example to show that arbitrary matrices A and B need not be
invertible if AB is invertible.

. Suppose T : R? — R? and 8 = {(1,2),(—1,-3)} is a basis for R? for which [T]; =
20 .
(0 1). Find T'(x,y).

(a) Find a nonzero A € M, y,(R) such that A% = 0.

(b) Show that there exists a non-zero linear transformation 7 : R™ — R” such that
% = 0.

(c) If V is a finite-dimensional vector space, show that there is a non-zero linear
transformation S : V' — V such that S? = 0.

(a) Given a basis = {z1,...,x,} for V, define the dual basis *.

(b) Let 8 = {e1,es} be the standard basis for R?. What is the dual basis 3*?

(c¢) Let v = {e1,e1 + ex}. What is the dual basis v*?

1 3
. Let A = <1 9
transformation associated to A. Let 3 be the standard basis for R?, and let 5* be the
dual basis for (R?)*.

) € Myy»(R). Let Ly : R? — R? be the left-multiplication linear

(a) What are the domain and codomain of (L4)'? How is this different than L 4:?
(b) Compute (L4)! on an arbitrary element of its domain.

(c) Compute [(La)']s+, and comment.



1. Since AB is invertible, the linear transformation Lp : F™ — F" is invertible. (Recall that
Lag(x) = ABz.) By Theorem 2.15 again we have Lyp = LsLp. Since Lyp is invertible,
R(LsLp) = F". But F" = R(LsLp) C R(La), so R(Ls) = F™ as well. Hence, L4 is
onto. By Theorem 2.5, Ly is invertible. We also have N(Lg) € N(LsLg) = {0}, so
N(Lg) = {0}. Thus Lp is one-to-one, and therefore invertible by Theorem 2.5. Since L,
and Lpg are invertible, so are A and B

However, if we don’t assume that A and B are square matrices, it is possible for AB to be
invertible but not have A and B invertible. For example, take
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which is certainly invertible, but A and B can’t be invertible because invertibility is only
defined for square matrices.

Then

2. (Also see Example 2.5.3) If 3’ is the standard basis for R?, then it will be easy to write
down a formula for T'(x,y) once we know [T]g. If @ is the change-of-coordinates matrix
from S to ', then Q[T)sQ " = [T]p by Theorem 2.23. Homework problem 2.5.2(a) tells us

that
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Since /' is the standard basis, T is just given by left-multiplication by [T]s. Thus
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3. (a) Take A = Fy,. That is, A is the matrix with a 1 in the top right entry, and zero
everywhere else. Then you can check that A% = 0:

0 -~ 01\ /0 - 01

0o --- 00/ \o --- 00

(b)Let T'= L 4, where A is the matrix from part (a). Then by Theorem 2.15(e), we have
T? = (Ls)* =Ly = Ly =0.

(c) Suppose dimV = n, and let ¢ : V. — F™ be an isomorphism. Such a ¢ exists by
Theorem 2.19, or more specifically if we take any basis § for V', then ¢(v) = [v]g is such an
isomorphism by Theorem 2.20. Then define

S = ¢ 'T¢
where T is as in part (b). Then

S?=(¢7'Te)(¢"'Tp) = ¢~ 'T?p = ¢~'0¢ = 0.

4. (a) p* ={f1,..., fn} where fi(z;) = d;;. See Theorem 2.24 and the following definition
to see that this does indeed define a basis for V*.

(b) By definition, fi(z,y) = fi(ze; + yea) = x and fo(x,y) = fo(xey + yes) = y are the
elements of (R?)* for which 8* = {f1, fo}. (c) Let v* = {fi, fo} be the dual basis. By the
definition of dual basis, we have

1= fi(1,0) = fi(e1)

0= fi(1,1) = fi(ex) + fi(e2).

Thus we must have fi(e2) = —1 and so fi(x,y) = fi(xe; + yes) = © — y. Similarly,

0= f2(1,0) = fa(er)
1= fo(1,1) = faler) + folea).

Thus we must have fo(es) = 1 and fo(z,y) = fo(rer + yes) = v.



5. (a) Ls: R? = R? so (L)' : (R*)* — (R?*)*. However, L : R? — R% (b) (Note that
I've changed the numbers slightly from the worksheet handed out in class.) Let 8 = {e;, ea}
be the standard basis for R?, and let 8* = {f1, fo} be its dual basis. Then

(LA (f)l(2,y) = fi(Lal2,y) = fi(A- (2,9)) = fi(z + 3y, + 2y) =z + 3y,
and
[(LA) (f2)l(2,y) = fo(La(2,y)) = fo(A- (2,9)) = filz + 3y, x + 2y) = = + 2y.

So let g1 = (La)!(f1), so that g; € (R?)* and ¢ (z,y) = x + 3y. Similarly, let go = (L4)!(fo)
so that go(x,y) = 2+ 2y. Then (L4)" is given on an arbitrary element of its domain by

(La) (cifr + cafa) = c1g1 + 29o.

(c) Since fi(z,y) = = and fo(z,y) = y, we have g3 = f1 + 3f, and g2 = f1 + 2fs. Thus
[(La)'(f1)]g- = (1,3) and [(La)'(f2)]s- = (1,2). The matrix [(La)"]s- has those coordinate

vectors for columns, so
qn (11
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([Lalp) = [(La)p~,

where the transpose on the left is the matrix transpose, and the transpose on the right is
the operator transpose. This illustrates Theorem 2.25.

Observe that



