
Math 110, Fall 2012, Sections 109-110
Worksheet 6

1. Let A =

(
1 4
1 2

)
.

(a) Write A−1 as a product of elementary matrices.

(b) Write A as a product of elementary matrices

2. True or false? If true, provide proof. If false, provide a counterexample.

(a) If A is an m× n matrix with a set of three linearly independent columns, then it
also has a set of three linearly independent rows.

(b) Elementary row operations preserve the rank of A.

(c) Elementary column operations preserve the rank of A.

(d) Elementary row operations on A preserve the range of LA.

(e) Elementary column operations on A preserve the range of LA.

(f) Every n× n matrix can be written as a product of elementary matrices.

3. For each of the following linear transformations, determine if T is invertible and com-
pute T−1 if applicable.

(a) T : P3(R)→ P3(R) defined by T (p) = p′.

(b) T : P2(R)→ R3 defined by T (p) = (p(−1), p(0), p(1)).

4. Suppose that D can be transformed into B using row and column operations. Prove
that D′ can be transformed into B′ using row and column operations, where

D′ =

(
1 0
0 D

)
, B′ =

(
1 0
0 B

)
.

5. Suppose that A ∈ Mm×n(F ) and b ∈ Fm. Prove that if rank(A | b) = rankA, then
there exists x ∈ F n such that Ax = b.

1. (a) Row reduction tells us (
1 0
−1 1

)(
1 4
1 2

)
=

(
1 4
0 −2

)
,



and thus (
1 −4
0 1

)(
1 0
0 −1/2

)(
1 0
−1 1

)(
1 4
1 2

)
=

(
1 0
0 1

)
.

Thus A is invertible and

A−1 =

(
1 −4
0 1

)(
1 0
0 −1/2

)(
1 0
−1 1

)
.

(b) We have

A =

((
1 −4
0 1

)(
1 0
0 −1/2

)(
1 0
−1 1

))−1
=

(
1 0
−1 1

)−1(
1 0
0 −1/2

)−1(
1 −4
0 1

)−1
=

(
1 0
1 1

)(
1 0
0 −2

)(
1 4
0 1

)
.

2. (a) True, since the rank of A is the maximal number of linearly independent columns and
the maximal number of linearly independent rows.

(b) True, see book.

(c) True, see book.

(d) False. The ranges of LA and LA′ are distinct for

A =

(
1 0
0 0

)
, A′ =

(
1 0
1 0

)
.

(e) True. Performing elementary column operations results on A in a matrix AC, with C
invertible. The claim is that R(LA) = R(LAC). If y ∈ R(LA), then there is an x ∈ F n

with Ax = y. Then AC(C−1x) = y, so y ∈ R(LAC). Conversely, if y ∈ R(LAC), there is
some x ∈ F n with ACx = y. Then A(Cx) = y, so y ∈ R(LA). Thus we have shown that
R(LAC) = R(LA), as desired.



(f) False, since products of elementary matrices are invertible, and e.g. the zero matrix is not.

3. (a) Since T (1) = 0, we have N(T ) 6= {0} so T is not invertible. Alternatively, one could
compute [T ]β for some basis β of P3(R) (e.g. the standard basis) and see that this matrix is
not invertible.

(b) If β = {1, x, x2} and γ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then we have

[T ]γβ =

1 −1 1
1 0 0
1 1 1

 .

This matrix is invertible, with

[T−1]βγ =
(
[T ]γβ

)−1
=

1

2

 0 2 0
−1 0 1
1 −2 1

 .

Thus we have

[T−1(a, b, c)]β = [T−1]βγ [(a, b, c)]γ = [T−1]βγ

ab
c

 =
1

2

 2b
c− a

a− 2b+ c

 .

Inverting the coordinates, we get

T−1(a, b, c) = b+
1

2
(c− a)x+

1

2
(a− 2b+ c)x2.

4. The idea is that we can just apply those same row operations that take D to B to the
bottom part of the bigger matrices. More formally, if D can be transformed into B then
there is an invertible matrix C such that CD = B. Then we have(

1 0
0 C

)
D′ = B′.

Since the matrix multiplying D′ on the left is invertible, we have that D′ and B′ are row-
equivalent.



5. Let C = (A | b). If v1, . . . , vn ∈ Fm are the columns of A, then

ColA = span{v1, . . . , vn} ⊆ span{v1, . . . , vn, b} = ColC.

Here ColA is the column space of A (i.e. the span of the columns of A). However, rankA =
dim ColA by definition, so dim ColA = dim ColC by the hypothesis of the problem. Thus
we must have ColA = ColC, and in particular b ∈ ColA. Thus there are scalars x1, . . . , xn
such that

b = x1v1 + · · ·+ xnvn.

But then if x = (x1, . . . , xn), we have Ax = b by the definition of matrix multiplication.


