
Math 54, Summer 2009, Lecture 4
Midterm 1 Review Exercises Solutions

These exercises don’t cover some of the very important computational-type problems,
including many of the things listed under the “be able to” section of the review sheet. You
can find examples of those types of problems on the sample exam and in the sections of
the book (including the supplemental exercises at the end of each chapter). These are a
little more theoretical, and are aimed at making sure you have a good grasp of the ideas
underlying the algorithms.

1) Let T : Rn → Rm be a linear transformation, and A be its standard matrix. Complete
the following table so that statements in the same row are equivalent:

Property of T Columns of A Pivots of A A~x = ~b?

One-to-one Linearly independent Every column ≤ 1 solution for every ~b

Onto Span Rm Every row ≥ 1 solution for every ~b

2) Let A be a 17× 17 matrix such that A12 = I17. Explain why A~x = ~0 only when ~x = ~0.

Note that I17 = A12 = A11A = AA11. Thus A is invertible (and A−1 = A11). By the
invertible matrix theorem, A~x = ~0 has only the trivial solution.

3) (#10, p.184) Suppose A is an invertible square matrix. Explain why AT A is also invert-
ible, and then show that A−1 = (AT A)−1AT .

Recall that det A = det AT , so det AT A = det AT det A = (det A)2. Since A is invertible,
det A 6= 0, and thus (det A)2 6= 0. Hence AT A is invertible by a theorem from class.

We can now check that
(
(AT A)−1AT

)
A = (AT A)−1(AT A) = I,

so by the invertible matrix theorem A−1 = (AT A)−1AT (we used the invertible matrix
theorem to not have to check that A(AT A)−1AT = I as well).
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4) Suppose you have a square matrix such that A3 = 0 (the zero matrix). Use matrix algebra
to compute (I − A)(I + A + A2). Generalize to show that if Ak = 0 for some k ≥ 1, then
(I − A) is invertible.

We compute

(I − A)(I + A + A2) = I + A + A2 − A− A2 − A3 = I − A3 = I.

Similarly, if Ak = 0, then (I−A)(I +A+A2 + · · ·+Ak−1) = I−Ak = I, so by the invertible
matrix theorem I − A is invertible.

5) True or False? If true, justify. If false, provide a counterexample. (Some of these are
from p.102.)

(a) If {~v1, ~v2} is a linearly independent set in Rn, so is {~v1, ~v1 + ~v2}.
(b) If an m× n matrix A has a pivot in every column or has a pivot in every row, then it

is invertible.

(c) If T is a linear transformation, then T (~0) = ~0.

(d) If A is a square matrix, then it can be written as a product of elementary matrices.

(e) If A is an n× n matrix such that A~x = ~b is consistent for every ~b, then A has a pivot
in every column.

(a) True. Suppose c1~v1 + c2(~v1 + ~v2) = ~0. Then (c1 + c2)~v1 + c2~v2 = ~0. But {~v1, ~v2} is
linearly independent, so c1 + c2 = 0 and c2 = 0. It follows that c1 = c2 = 0. Thus ~v1 and ~v2

have no (non-trivial) linear dependences, which means that the set is linearly independent
by definition. Just for fun: can you think of a way to solve this problem using elementary
matrices and invertibility?

(b) False. This is only true if A has a pivot in every column and a pivot in every row.

Counterexample:

[
1 0 0
0 1 0

]
has a pivot in every row, but is not square (so not invertible).
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(c) True. If T is linear, T (~0) = T (~0 + ~0) = T (~0) + T (~0). Subtracting T (~0) from both sides
yields T (~0) = ~0.

(d) False. Elementary matrices are invertible, so products of elementary matrices are as well.

So

[
1 0
0 0

]
, which is not invertible because it does not have a pivot in every row, cannot be

written as a product of elementary matrices.

(e) True, by the invertible matrix theorem. If A~x = ~b is consistent for every ~b, then A has a
pivot in every row. A is square, so this implies there is a pivot in every column.

Bonus: (6) Let A =

[
2 4
1 3

]
. (a) Factor A−1 as a product of elementary matrices. That is,

find elementary matrices E1, . . . , Em such that A−1 = E1 · · ·Em. (b) Use this to factor A as
a product of elementary matrices.

Let’s expand A−1 using row reduction:
[
2 4
1 3

]
→

[
1 3
2 4

]
→

[
1 3
0 −2

]
→

[
1 3
0 1

]
→

[
1 0
0 1

]

is the same as

A →
[
0 1
1 0

]
A →

[
1 0
−2 1

] [
0 1
1 0

]
A →

[
1 0
0 −1

2

] [
1 0
−2 1

] [
0 1
1 0

]
A →

→
[
1 −3
0 1

] [
1 0
0 −1

2

] [
1 0
−2 1

] [
0 1
1 0

]
A = I2.

Thus A−1 =

[
1 −3
0 1

] [
1 0
0 −1

2

] [
1 0
−2 1

] [
0 1
1 0

]
.

(b) Using the rule for the inverse of a product of matrices, we get

A = (A−1)−1 =

([
1 −3
0 1

] [
1 0
0 −1

2

] [
1 0
−2 1

] [
0 1
1 0

])−1

=

=

[
0 1
1 0

]−1 [
1 0
−2 1

]−1 [
1 0
0 −1

2

]−1 [
1 −3
0 1

]−1

=

[
0 1
1 0

] [
1 0
2 1

] [
1 0
0 −2

] [
1 3
0 1

]
.
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