
Name: Solutions

Math 54 Midterm 2
July 31, 2009

Instructor: James Tener

Problem 1: / 15 points

Problem 2: / 10 points

Problem 3: / 15 points

Problem 4: / 10 points

Problem 5: / 10 points

Problem 6: / 10 points

Total: / 70 points

Instructions:

• Answer in the space provided. If you run out of space, I can give you more paper.

• Show all of your work. When justifying answers, express yourself clearly and in an
organized fashion. You are graded on what you write down, not what you mean to say.

• You may cite theorems from class/the book by (correctly) stating what it says.

• Cross out any work you do not want graded.

• No calculators are allowed.



Problem 1.

(a) Let V be a vector space, and let S = {~v1, . . . , ~vn} be a subset of V . Define what it means
for S to be linearly independent, and what it means for S to span V . (4 points)

S is linearly independent means that whenever c1~v1 + · · · + cn~vn = ~0, we must have c1 =
· · · = cn = 0. S spans V if every element in V is a linear combination of the elements of S.
That is, for every ~y ∈ V , there are coefficients c1, . . . , cn such that ~y = c1~v1 + · · ·+ cn~vn.

(b) Let A be an n × n matrix, and let ~x ∈ Rn. Explain how you would determine whether
~x ∈ Col A and whether ~x ∈ Nul A. (3 points)

Since A~y = ~x is consistent if and only if ~x ∈ Col A, you could row reduce the augmented
matrix [A~x] and ~x ∈ Col A if and only if it corresponds to a consisted system. You could
check if ~x ∈ Nul A by multiplying A by ~x, and seeing if you get ~0.

(c) Define what it means for a vector space to be finite dimensional. (4 points)

A vector space is called finite dimensional if there is some (finite) set S such that V = Span S.
This is equivalent to V having a (finite) basis.

(d) Define what it means for a square matrix to be diagonalizable. (4 points)

A matrix A is called diagonal if it is similar to a diagonal matrix. That is, if there is an
invertible matrix P and a diagonal matrix D such that A = PDP−1.
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(a) Let V = Span{~v1, ~v2, ~v3}. Find an orthogonal basis for V (with respect to the dot
product). (5 points)

We apply Gram-Schmidt.
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Thus our orthogonal basis for V is
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(b) Let W = Span{~v1, ~v2}. Find the vector in W closest to ~v3, and the distance between ~v3

and W . (5 points)

The closest vector in W to ~v3 is ProjW ~v3. To calculate this, we need an orthogonal basis for
W . Note that if we apply Gram-Schmidt to {~v1, ~v2} we would just get {~x1, ~x2} from above.
That is, {~x1, ~x2} is an orthogonal basis for W . Thus

ProjW ~v3 = ProjSpan ~x1,~x2
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was calculated in part (a), or it could be recalculated for fun from the formula using {~x1, ~x3}.
The distance from W to ~v3 is ‖~v3 − ProjW ~v3‖. From our work in (a), this is just ‖~x3‖ =

√
15.



Problem 3. Say whether the given statement is true or false. If it is true, explain why.
If it is false, provide a counterexample showing that it is false. No points are given
for true/false without correct justification. (3 points each)

(a) If A is diagonalizable, then all of its eigenvalues have multiplicity 1.

False. A counterexample is

[
1 0
0 1

]
.

(b) If the characteristic polynomial of A is λ2(λ− 3)4(λ + 5)6, then dim Nul A ≤ 2.

True. The characteristic polynomial tells us that 0 is an eigenvalue of A, with multiplicity
2. Then dim Nul A is the dimension of the eigenspace for this eigenvalue, which must be less
than or equal to the multiplicity.

(c) Orthogonal matrices are invertible.

True. An orthogonal matrix is one for which UT = U−1.

(d) If S1 and S2 are subsets of a vector space V such that S1 is linearly dependent and S2

does not span V , then S2 has at least as many elements as S1.

False; this is not always true. A counterexample is S1 =

{[
1
0

]
,

[
2
0

]}
and S2 =

{[
47
47

]}
.

Note: the statement can be true for certain choices of S1 and S2, e.g. S1 =

{[
0
0

]}
and

S2 =

{[
1
0

]
,

[
2
0

]}
.

(e) If S1 and S2 are subsets of a vector space V such that S1 is linearly independent and S2

spans V , then S2 has at least as many elements as S1.

True. S1 has at most dim V elements, and S2 has at least dim V elements. (We know V is
finite dimensional because it admits a spanning set).
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and
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(b) If T : V → V is a linear transformation and [T ]B =

[
1 2
3 4

]
, find [T ]C . (4 points)

We have

[T ]C = P
C←B

[T ]B P
B←C

=

[
1 1
2 1

] [
1 2
3 4

] [−1 1
2 −1

]
=

[
8 −2
11 −3

]
.



Problem 5. Let A be a 5 × 5 matrix such that A2 = 0 (the zero matrix). What are the
possible value(s) of Rank A? Narrow it down as much as possible, but you don’t need to
provide examples to prove that your possible values are, in fact, possible. (Hint: look at
Col A and Nul A) (10 points)

We first show that Col A ⊆ Nul A (as in the practice problem). Suppose ~y ∈ Col A. Then
there is some ~x ∈ R5 such that A~x = ~y. Hence A~y = A2~x = 0, and so ~y ∈ Nul A. Since an
arbitrary element of Col A must be in Nul A, we have shown that Col A ⊆ Nul A.

We therefore know that Rank A = dim Col A ≤ dim Nul A. But the Rank-Nullity theorem
says that Rank A + dim Nul A = 5. The only possible way to satisfy these conditions is if
Rank A is 0, 1 or 2.

You didn’t have to show that all of these values were possible, but we can do that now.
Certainly Rank A = 0 is possible, since 02 = 0 and Rank 0 = 0. For the other two:

Rank




0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




= 1, Rank




0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




= 2.



Problem 6. You are (still) a secret agent. Unfortunately, the matrix A you found on the
previous exam was a decoy, and your organization actually needs information about the
much larger matrix B. Via super secret methods, you are able to determine the following
facts about B:

• B is n× n, where 90 ≤ n ≤ 110.

• 1 is an eigenvalue of B, and dim E1 = 63.

• −1 is an eigenvalue of B, and dim E−1 = 47.

Somehow, your agency expects you to find B2. Is this possible? If not, say as much as you
can about B, B2 and n. If it is possible, find B2 and save the world for real this time. (10
points)

Since the dimensions of the eigenspaces cannot add up to more than n (by the diagonalization
theorem at the end of the diagonalization section of the text), we must have n = 110. Thus
dim E1 + dim E−1 = n, and so B is diagonalizable. Thus there is an invertible matrix P and
a diagonal matrix D, whose diagonal entries are ±1, such that B = PDP−1. Then

B2 = PDP−1PDP−1 = PD2P−1 = PI110P
−1 = PP−1 = I110.


