Name: _____

Math 54, Summer 2009, Lecture 4 Quiz 5 Solutions

(1) Determine if W is a subspace of \mathbb{P}_3 . Justify your answer by proving its a subspace, or showing that it is not.

(a) W is all polynomials of the form $p(t) = ct^3$ for some $c \in \mathbb{R}$.

The zero polynomial p(t) = 0 is of the form ct^3 (with c = 0), and is therefore in W. If $p_1(t) = ct^3$ and $p_2(t) = dt^3$, then $(p_1 + p_2)(t) = (c + d)t^3$ is in W. Also, $(rp_1)(t) = rct^3$ is in W, so W is a subspace of \mathbb{P}_3 . Easier way: $W = \text{Span}\{t^3\}$ and is therefore a subspace.

(b) W is all polynomials p(t) in \mathbb{P}_3 such that p(47) = 0.

The zero polynomial p(t) = 0 certainly has p(47) = 0. If $p_1, p_2 \in W$, then $(p_1 + p_2)(47) = p_1(47) + p_2(47) = 0 + 0 = 0$, so $p_1 + p_2 \in W$. If $r \in \mathbb{R}$, then $(rp_1)(47) = rp_1(47) = r0 = 0$, so $rp_1 \in W$. Thus W is a subspace of P_3 . Alternate approach: W is the kernel of the linear transformation $p \mapsto p(47)$, although you would have to prove that this is linear.

(c) W is all polynomials in \mathbb{P}_3 whose coefficients are all integers.

Not a subspace. The polynomial $p(t) = t^3 + 2 \in W$, but scaling by 1/3 yields a polynomial that is not in W.

(2) Determine whether or not the set
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\9\\12 \end{bmatrix}, \begin{bmatrix} -1\\1\\4 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^3 .

Row redcuing we get

$$A = \begin{bmatrix} 1 & 4 & -1 \\ 2 & 9 & 1 \\ 3 & 12 & 4 \end{bmatrix} \to \begin{bmatrix} 1 & 4 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 7 \end{bmatrix}.$$

Since A has a pivot in every column, its columns are linearly independent. Since it has a pivot in every row, its columns span \mathbb{R}^3 . Thus the columns of A are a basis for \mathbb{R}^3 .

(3) Let
$$H = \operatorname{Span} \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 4\\3\\2\\1 \end{bmatrix} \right\}.$$

- (a) Find a matrix A such that $H = \operatorname{Col} A$.
- $\begin{bmatrix} 1 & 4 \\ 2 & 3 \\ 3 & 2 \\ 4 & 1 \end{bmatrix}$

(b) If possible, find a second matrix B such that $H = \operatorname{Col} B$. Otherwise, explain why it's impossible.

$\begin{bmatrix} 4\\ 3\\ 2\\ 1 \end{bmatrix}$	$\begin{array}{c} 1\\ 2 \end{array}$		$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	$\frac{4}{3}$	$1 \\ 2$		$\begin{bmatrix} 1\\ 2 \end{bmatrix}$	8 6	, etc.
2	3	or	3	2	3	or	3	4	
1	4		4	1	4		4	2	