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Abstract

A II1 subfactor is a pair of von Neumann algebras N ⊂ M with trivial centre

and equipped with a trace. It is associated to an index [M : N ], an invariant that

can take non-integer values. We prove the Jones index theorem, a major result

of Vaughan Jones stating that the set of all possible indices is {4 cos2(π/n) : n ≥
3} ∪ [4,∞]. Our proof incorporates the theory of Temperley-Lieb algebras.

We also construct the principal graph of a II1 subfactor. We prove that it

strictly generalises the index, and obtain a second proof of the index theorem.

We compute the index and principal graph for an important family of subfactors

called the Jones subfactors.
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Notation and terminology

Notation

B(H) The set of bounded operators on a Hilbert space H.

S ′ The commutant of S on some space H, i.e. S ′ = {x ∈ B(H) :

xy = yx for all y ∈ S}.

SOT,WOT Strong operator topology; weak operator topology.

s-lim,w-lim Strong limit; weak limit.

⟨S⟩alg, ⟨S⟩ The ∗-algebra generated by a set S; the von Neumann algebra

generated by a set S.

p ∨ q, p ∧ q The projection onto im p+im q; the projection onto im p ∩ im q.∨
p∈S p,

∧
p∈S p The projection onto

∑
p∈S im p; the projection onto

⋂
p∈S im p.

p ≤ q im p ⊂ im q.

⪯,≈ Murray-von Neumann order; Murray-von Neumann equiva-

lence (Definition 1.3.2).

n⃗A,ΛB
A, β

B
A Dimension vector of A; inclusion matrix of A ⊂ B; Bratteli

diagram of A ⊂ B. (Definitions 1.5.6, 1.5.8, 1.5.10)

V (G) Vertex set of a graph G.

M̂, x̂ M viewed as a vector space; an element x ∈ M viewed as an

element of M̂ .

L2(M) The standard form Hilbert space for M , containing M̂ as a

dense subspace (Theorem 1.6.5).

xiii



xiv CONTENTS

J J : L2(M) → L2(M) is the extension of the adjoint map

x̂ 7→ (̂x∗).

∥ · ∥ The operator norm on a von Neumann algebra. Not to be

confused with the L2-norm.

⟨·, ·⟩L2 , ∥ · ∥L2 ⟨x̂, ŷ⟩L2 = tr(y∗x); ∥x̂∥L2 = tr(x∗x)1/2. Not to be confused

with the operator norm.

eN The projection of L2(M) onto L2(N), called the Jones projec-

tion.

EN The unique trace-preserving conditional expectation ofM onto

N .

⟨M, eN⟩ or M1 The basic construction of N ⊂M .

Mn M−1 = N,M0 = M , and Mn is the basic construction of

Mn−2 ⊂Mn−1.

en Notation for eMn−2 : L
2(Mn−1) → L2(Mn−2). Note en belongs

to Mn.

εn A member of a family of projections satisfying the Jones rela-

tions.

[n : m] Notation for ⟨1, εn, εn+1, . . . , εm⟩alg.

En A generator of the Temperley-Lieb algebra.

TL(τ), TLn(τ) The Temperley-Lieb algebra; the ∗-subalgebra of TL(τ) gen-

erated by 1, E1, . . . , En.

J (n) ⊂ J The Jones subfactor of index 4 cos2(π/n) (Definition 2.8.5).

Yn Notation for N ′ ∩Mn.

zn Notation for zYn(en).

Xn Notation for Ynzn.

βn+1
n , Λn+1

n The Bratteli diagram of Yn ⊂ Yn+1; the inclusion matrix.

β, Γ The full Bratteli diagram of a subfactor (Definition 3.4.1); the

principal graph of a subfactor (Definition 3.5.1).



CONTENTS xv

Pn, P
new
n , P̃n The vertices of Γ at level n; the new vertices at level n; the

old vertices at level n.

Terminology

∗-algebra A C-vector space equipped with a C-linear multiplica-

tion and antilinear involution ∗ : A → A denoted by

a 7→ a∗.

∗-homomorphism A linear map of ∗-algebras ψ : A → B that respects

the multiplication and the ∗-operation.

Unital A unital ∗-subalgebra A ⊂ B is such that A contains

the identity of B. A unital map is a map that preserves

the identity.





Introduction

The theory of II1 subfactors is a subfield of von Neumann algebra theory. Intro-

duced by Francis Murray and John von Neumann [MV36], von Neumann algebras

are ∗-algebras of operators on a Hilbert space which contain 1 and are closed in

the weak operator topology. They are significant in analysis as an important

setting for the spectral theory of bounded operators; they are also important to

formalisations of quantum mechanics.

Among the von Neumann algebras studied by Murray and von Neumann are

the II1 factors. They are the family of infinite-dimensional von Neumann algebras

which are both factors (having trivial centre) and tracial (being equipped with a

nice trace). They generalise the structure of L∞(X,µ) and its trace f 7→
∫
fdµ.

The interactions between traces and algebraic structure confers II1 factors with

far more structure than the sum of their parts.

A II1 subfactor is an inclusion of II1 factors N ⊂ M . In fact, all morphisms

of II1 factors are injective, so II1 subfactor theory is equivalent to the theory of

morphisms of II1 factors. Unlike II1 factor theory, II1 subfactor theory came to

maturity well after Murray and von Neumann. Vaughan Jones’s groundbreaking

paper ‘Index for Subfactors’ [Jon83] signifies the beginning of modern II1 sub-

factor theory, and led to an explosion of new constructions and invariants. His

work [Jon83] [Jon85] [Jon87] also revealed connections between II1 factors and

apparently unrelated fields, including statistical mechanics, quantum algebras,

and knot theory.

In this thesis, we introduce two of the first modern invariants of a II1 subfac-

tor, and prove a major theorem using each. We introduce the index [M : N ] and

prove the Jones index theorem. This theorem states that, unlike the index of a

subgroup, the index [M : N ] takes a value in {4 cos2(π/n) : n ≥ 3} ∪ [4,∞]. We

give a modernised proof with techniques from Temperley-Lieb algebra theory, a

subfield of quantum algebra.

We also construct an invariant which appeared later in the literature than

1



2 INTRODUCTION

the index [Ocn88] [GHJ89] [Pop90] – the principal graph Γ. We prove that the

principal graph generalises the index, allowing us to give a second, graph-theoretic

proof of the Jones index theorem. We also compute the principal graphs for an

important family of subfactors known as Jones subfactors.

Structure of the thesis

In Chapter 1, we present a rapid overview of the background theory necessary

for II1 subfactor theory. We largely omit proofs, as almost all of this material

is ‘classical’, originating in Murray and von Neumann’s papers [MV36] [MN37]

[Neu40] [MN43] or coming not long after. The exception is the index [M : N ] of

a II1 subfactor N ⊂M , which was introduced by Jones [Jon83].

In Chapter 2, we introduce and prove the Jones index theorem. Towards

the proof, we describe the most important technical innovations of Jones’s paper

[Jon83]: the basic construction, a technique that extends a subfactor N ⊂ M to

a triplet N ⊂M ⊂M1, as well as the Jones tower, the sequence {Mn} obtained

by iterating the construction indefinitely.

We show that a Temperley-Lieb algebra arises in the Jones tower. We develop

tools for probing Temperley-Lieb algebras, and use them to prove the index the-

orem.

In Chapter 3, we give an account of the principal graph, an invariant that

generalises the index and has become central to II1 subfactor classification efforts.

We first introduce the standard invariant, a major invariant for II1 subfactors

that is built from the Jones tower. From the standard invariant, we construct the

principal graph Γ. We prove, in certain circumstances, Γ generalises the index

via the relation ∥Γ∥2 = [M : N ] and hence obtain an alternate proof of the Jones

index theorem.

Finally, we provide computations of the three major invariants (standard in-

variant, principal graph, index) for the Jones subfactors, the first family of sub-

factors to be constructed with modern techniques.

Overall, this thesis acts as an account of the explosion of modern subfactor

theory in the decade following ‘Index for Subfactors’ [Jon83].



Chapter 1

Background

1.1 Introduction

In this chapter, we cover the background necessary for a study of modern II1

subfactor theory. We cover general theory of von Neumann algebras, building

up to the definition and basic properties of II1 factors. Much of this material

originates in the work of Murray and von Neumann. We largely sketch or omit

proofs.

We introduce one concept from II1 subfactor theory in this chapter – the

index [M : N ], a relative measure of size for a subfactor N ⊂ M , introduced by

Vaughan Jones [Jon83].

1.2 Definition and elementary notions

In this chapter, H and K denote arbitrary Hilbert spaces. All Hilbert spaces in

this thesis are assumed to be separable.

Definition 1.2.1. Let S ⊂ B(H). The commutant of S, denoted by S ′, is defined

by S ′ = {x ∈ B(H) : xy = yx for all y ∈ S}. The bicommutant of S, denoted by

S ′′, is the commutant of S ′.

Remark 1.2.2. If S, T are any subsets of B(H), then S ⊂ T =⇒ T ′ ⊂ S ′.

Moreover, S ⊂ S ′′.

We recall the definitions of four important operator topologies. In the weak

operator topology on B(H), a net {xα} ⊂ B(H) converges to x ∈ B(H) if and

only if ⟨xξ, η⟩ −−−→
α→∞

⟨xξ, η⟩ for all ξ, η ∈ H. In the strong operator topology,

3



4 CHAPTER 1. BACKGROUND

xα converges to x if and only if xαξ −−−→
α→∞

xξ for all ξ ∈ H. The ultraweak

(ultrastrong) topology is the weak (strong) topology on B(H) ⊗ 1 ⊂ B(H ⊗ L)
for L a Hilbert space with dimL = ∞, carried over to B(H) by the obvious

isomorphism x⊗ 1 7→ x [Jon09, p18].

Lemma 1.2.3. Suppose A is a ∗-subalgebra of B(H). Then the closures of M in

any of the (ultra)weak and (ultra)strong topologies coincide.

See [Jon09, p20]. Hence we write A to unambiguously denote the closure of

A in any of the four topologies. If A is a ∗-subalgebra containing the identity, a

stronger result applies: the famous von Neumann bicommutant theorem.

Theorem 1.2.4. (von Neumann bicommutant theorem) [MV36]

Suppose M is a ∗-subalgebra of B(H) containing 1. Then the closures of M

in any of the (ultra)weak and (ultra)strong topologies coincide with M ′′.

See [Bla06, p49] for a proof. This result is remarkable, because the closure

is analytic, while M ′′ is defined algebraically. We hence have equivalent analytic

and algebraic definitions of a von Neumann algebra.

Definition 1.2.5. A von Neumann algebra M on H is a ∗-subalgebra of B(H)

containing 1 and satisfying, equivalently,

1. M =M ′′.

2. M is closed in one (and hence all) of the (ultra)weak and (ultra)strong

topologies.

As the (ultra)weak and (ultra)strong topologies are all weaker than the oper-

ator norm topology, a von Neumann algebra is closed in the norm topology and

therefore a C∗-algebra. (No C∗-algebra theory is needed for this thesis.)

Definition 1.2.6. The von Neumann algebra generated by a set S ⊂ B(H),

denoted by ⟨S⟩, is equivalently defined as

1. ⟨S⟩ = (S ∪ S∗)′′.

2. ⟨S⟩ = ⟨S ∪ {1}⟩alg, where ⟨S ∪{1}⟩alg is the ∗-algebra generated by S ∪{1}
and the closure can be taken in the (ultra)strong or (ultra)weak topologies.

Example 1.2.7. B(H) is a von Neumann algebra for any Hilbert space H.
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Example 1.2.8. If (X,µ) is a finite measure space, the ∗-algebra of multiplication

operators Mf : g 7→ fg for f ∈ L∞(X,µ) is a von Neumann algebra, which we

identify with L∞(X,µ) itself.

In fact, all abelian von Neumann algebras are isomorphic to L∞(X,µ) for

some X. Depending on one’s perspective, either this fact is the spectral theorem

for bounded operators [RS80, p227], or else its proof follows from the spectral

theorem [Jon09, p23]. Hence, von Neumann algebra theory is often called ‘non-

commutative measure theory’.

Morphisms and the abstract/spatial distinction

Although a von Neumann algebra M is defined as a subalgebra of B(H) for some

Hilbert H, we make a distinction between its abstract and spatial properties. Ab-

stract properties are recoverable from the structure of M as a normed ∗-algebra1
– i.e., the addition, multiplication, ∗-operation, and norm ∥ ·∥. Spatial properties
are those which depend on the underlying space H and the representation of M

on H. A morphism of von Neumann algebras is defined to preserve abstract but

not spatial properties.

To make the definition, we recall some elementary definitions from functional

analysis that carry over to von Neumann algebras. We write that x ∈ M is

positive if there exists y ∈ M such that x = y∗y. If x, y ∈ M are self-adjoint,

then we write x ≤ y if y−x is positive. This forms a partial order on self-adjoint

elements of M . A linear map ψ : N →M is called positive if, whenever x ∈ N is

positive, ψ(x) ∈M is positive.

Definition 1.2.9. Suppose N ⊂ B(H) and M ⊂ B(K) are von Neumann alge-

bras. A positive linear map ψ : N → M is normal if ψ (
∨

α xα) =
∨

α ψ (xα)

whenever {xα} is an increasing, norm-bounded net of self-adjoint elements of N .

(Here we have written
∨

α to mean the supremum over α.)

Definition 1.2.10. Suppose N ⊂ B(H) and M ⊂ B(K) are von Neumann alge-

bras. A morphism of von Neumann algebras is a normal unital2 ∗-homomorphism

ψ : N →M .

1For the reader familiar with C∗-algebras, we note that von Neumann algebras can be

characterised as C∗-algebras which are Banach space duals [Sak56, p763]. This abstract char-

acterisation makes no reference to a Hilbert space.
2ψ(1) = 1.
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In particular, an inclusion of von Neumann algebrasN ⊂M is always assumed

to be unital, i.e. we require that 1 ∈ N . We often consider an inclusion N ⊂ M

as an object in its own right. Naturally, a morphism between inclusions N1 ⊂M1

and N2 ⊂M2 is a morphism ψ :M1 →M2 such that ψ(N1) ⊂ N2.

A bijective von Neumann algebra morphism is an isomorphism. Henceforth,

we use ‘abstract’ to mean properties preserved under von Neumann algebra iso-

morphisms. We use ‘abstract isomorphism’ interchangeably with ‘isomorphism’.

A priori, the operator topologies on a von Neumann algebra are spatial, as

they are inherited from B(H) and hence depend on H. However, we note that

normality is equivalent to a continuity assumption.

Lemma 1.2.11. A positive linear map (in particular, any ∗-homomorphism)

ψ : N →M is ultraweakly continuous if and only if it is normal.

See [Con00, 46.5]. Hence the ultraweak topology on a von Neumann algebraM

is preserved under abstract isomorphism, although the other operator topologies

may not be. However, this is never a problem. Almost all topological results in

this thesis relate to the closure of a ∗-subalgebra of B(H), which is the same in all

four operator topologies by Lemma 1.2.3. Therefore, when A is a ∗-subalgebra,
the object A is well-defined under abstract isomorphisms.

We also make the notion of ‘spatial property’ precise by talking about rep-

resentations. When we assume that a M is a von Neumann algebra, we tacitly

assume M ⊂ B(H) for some H, but, because we view M as an abstract object,

we do not consider H to be a ‘privileged’ representation of M . Indeed, we are

frequently interested in multiple representations of a von Neumann algebra.

Definition 1.2.12. A representation of a von Neumann algebra M on a Hilbert

space H is an von Neumann algebra morphism ψ :M → B(H).

If ψ is a faithful (injective) representation, then M is isomorphic to its image,

and we typically identify it with its image. Equivalence of representations is given

by the notion of spatial isomorphism.

Definition 1.2.13. Suppose H,K are Hilbert spaces and N ⊂ B(H),M ⊂ B(K)

are von Neumann algebras. Suppose u : H → K is unitary and that uNu∗ =M .

Then the map x 7→ uxu∗ is called a spatial isomorphism or unitary equivalence.

Henceforth, ‘spatial’ refers to properties depending on a choice of faithful

representation, and hence preserved under spatial isomorphism. In particular,

commutants are spatial, so we modify Definition 1.2.1 to clarify this.
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Definition 1.2.14. IfM has a faithful representation on H, then the commutant

of M on H is the von Neumann algebra {x ∈ B(H) : xy = yx ∀ y ∈ M}, which
we denote by M ′ ∩ B(H) or simply M ′ if the choice of representation is implicit.

E.g., if we write M ⊂ B(H), then it is implied M ′ is the commutant on H.

1.3 Projections in a von Neumann algebra

A study of von Neumann algebras is inseparable from the study of its projections.

Recall p is said to be a projection if p = p∗ = p2.

If M is von Neumann, then the von Neumann subalgebra ⟨x⟩ generated by a

self-adjoint x is abelian and so isomorphic to some L∞(X) (see Example 1.2.8).

The measurable indicator functions on X map to a family of projections in M

called the spectral projections of x. The spectral theorem implies x is contained in

the strong closure of its spectral projections [RS80, pp234-235]. As ⟨x⟩ is strongly
closed, it follows that a von Neumann algebra is generated by its projections.

Hence, understanding projections in M is tantamount to understanding M .

Recall that self-adjoint operators have a partial order where x ≤ y if and only

if y − x is positive. Projections form a suborder. Write p ∨ q (resp. p ∧ q) for

the supremum (resp. infimum) of two projections p, q with respect to the partial

order. For convenience, we collect standard results about projections which we

use extensively; we will not refer back to this lemma. See also [Jon09, p20].

Lemma 1.3.1. Suppose p, q ∈ B(H) are projections, x ∈ B(H) is arbitrary, and

S ⊂ B(H) is a set of projections.

1. x commutes with p if and only if im p is invariant under x and x∗.

2. p ≤ q if and only if im p ⊂ im q if and only if pq = p.

3. p ∨ q is the projection onto im p+ im q. Moreover,
∨

p∈S p is the projection

onto
∑

p∈S im p.

4. p ∧ q is the projection onto im p ∩ im q. Moreover,
∧

p∈S p is the projection

onto
⋂

p∈S im p.

5. p ∧ q = 0 if and only if pq = 0. (If so, p, q are said to be mutually

orthogonal.)

6. Suppose M is a von Neumann algebra. The set of projections in M is closed

under arbitrary suprema and infima [Jon09, 20].
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Although important and used extensively, this ordering (henceforth the ‘usual

order’) on projections reveals little about a von Neumann algebra’s structure. An

order that reveals more structure is the Murray-von Neumann ordering.

Recall that u ∈ B(H) is called a partial isometry if u|(keru)⊥ is an isometry.

Equivalently, u is a partial isometry if u∗u and uu∗ are projections. Call im(u∗u) =

(keru)⊥ and im(uu∗) = imu the initial and final spaces of u.

p, q are equivalent in the usual ordering if and only if p = q, or, equivalently,

im p = im q. Under the Murray-von Neumann ordering, for p, q to be equivalent,

it suffices for im p and im q to be related by a partial isometry.

Definition 1.3.2. (Murray-von Neumann ordering) 3 [MV36, p151]

Suppose M is a von Neumann algebra and p, q ∈M are projections.

1. p ⪯ q if there exists a partial isometry u ∈M with uu∗ = p and u∗u ≤ q.

2. p ≈ q if there exists a partial isometry u ∈ M with uu∗ = p and u∗u = q.

We say p, q are Murray-von Neumann equivalent.

The Murray-von Neumann ordering is a partial order on the set of Murray-

von Neumann equivalence classes in M ; in particular if p ⪯ q and q ⪯ p, then

p ≈ q. See [Jon09, 6.1.2] for a proof.

An extremely important data point for the classification of a von Neumann

algebra M is its order type.

Example 1.3.3. p ⪯ q in B(H) if and only if dim(im p) ≤ dim(im q). Conse-

quently, the order type of B(H) is the linear order {0, 1, . . . , dimH}.

Another data point is whether the identity is equivalent to another projection.

Definition 1.3.4. A projection p ∈ M is said to be infinite if p ≈ q for some

q < p (that is, q such that q ≤ p but q ̸= p). Otherwise, we say p is finite.

Definition 1.3.5. A von Neumann algebra M is finite if 1 ∈M is finite.

Example 1.3.6. B(H) is finite if and only if dimH < ∞. To see that B(H) is

infinite when dimH = ∞, let H be ℓ2(N), and r be the right shift operator (so

r∗ is the left shift). Then r∗r = 1 while rr∗ ̸= 1.

3A note on terminology: although the Murray-von Neumann order is theoretically significant,

we use the usual ordering ≤ far more frequently. E.g. when we write ‘p is a subprojection of

q’, ‘q dominates p’, etc., we mean p ≤ q unless otherwise specified.



1.4. FACTORS AND THEIR CLASSIFICATION 9

We caution that finite von Neumann algebras are not literally finite sets, nor

are they in general finite-dimensional.

Our final remarks on projections concern subalgebras induced by projections.

Given a von Neumann algebra M ⊂ B(H) and a projection p ∈ B(H), form

the set pMp ⊂ B(pH). If x ∈ M is viewed as a block matrix subject to the

decomposition H = pH⊕ (1− p)H, then pxp is the top-left corner. We call pMp

a cutdown of M by p.

Proposition 1.3.7. If M ⊂ B(H) is a von Neumann algebra and p ∈ M or

p ∈ M ′, then the commutant4 commutes with the cutdown, i.e. pMp = (pM ′p)′

and (pMp)′ = pM ′p. Moreover, pMp, pM ′p are von Neumann algebras on B(pH).

See [Jon09, p21] for a proof. If p ∈ M ′, we can write pMp as Mp. A key

difference between a cutdown by q ∈M and by p ∈M ′ is the following result.

Lemma 1.3.8. IfM is a von Neumann algebra and p ∈M ′, then the map x 7→ xp

is a von Neumann algebra morphism of M onto Mp.

Proof. Right-multiplication by p is continuous in any of the four operator topolo-

gies [Jon09, 3.4.1] and hence normal. As p is self-adjoint and commutes with M ,

the map is a ∗-homomorphism. It is unital as p is the identity on pH.

We conclude our prerequisite discussion of projections here, although of course

projections will occur extensively throughout this thesis.

1.4 Factors and their classification

The central objects of this thesis are II1 subfactors, which necessitates a discus-

sion of factors.

Definition 1.4.1. A von Neumann algebra M is a factor if its centre is trivial,

i.e. Z(M) = C1. A subfactor is an inclusion N ⊂M where N,M are factors.

Factoriality is equivalent to a simplicity requirement – a von Neumann algebra

is a factor if and only if it contains no strongly-closed ideals [Jon09, 6.1.12]. Thus

the study of factors is as natural a subdiscipline of von Neumann algebra theory

as the study of simple groups or rings is in abstract algebra.

4As we have mentioned, commutants are implicitly taken with respect to the space where

they make sense, e.g. M ′ ⊂ B(H) whereas (pMp)′ ⊂ B(pH).
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A major achievement of Murray and von Neumann was the complete classifi-

cation of factors by just two parameters: the order type of ⪯, and the finiteness

of the factor. The key observation is the following.

Proposition 1.4.2. The Murray-von Neumann order in a factor M is a total

order on Murray-von Neumann equivalence classes. That is, for all projections

p, q ∈M , either p ⪯ q or p ⪰ q. If p ⪯ q and p ⪰ q, then p ≈ q.

See [Jon09, 6.1.8] for a proof. Hence every factor is associated to a linear

order type. The classification splits factors into types I, II, III, with subtypes

In for n ∈ N ∪ {∞}, as well as subtypes II1 and II∞.

Theorem 1.4.3. (Classification of factors) [MV36, p172]

Suppose M is a factor. Then the Murray-von Neumann order on equivalence

classes in M is isomorphic to a finite total order, or N, or R. Moreover, the type

of M is given by the following table.

Finiteness/Order type Finite order N R
Finite factor In II1

Infinite factor III I∞ II∞

Specifically, a type In factor has order type {1, . . . , n} for n ∈ N, and a type

III factor has order type {0, 1}.

We leave the definition of a type I factor to Section 1.5, and a type II factor

to Section 1.7, and not consider type III factors at all. We conclude this section

with a useful lemma. Recall Proposition 1.3.7 and Lemma 1.3.8. IfM is a factor,

then those results can be strengthened. See [Jon09, 3.4.4] for a proof.

Lemma 1.4.4. Suppose M is a factor.

1. If p ∈M or p ∈M ′ is a projection, then pMp is a factor.

2. If p ∈ M ′ is a nonzero projection, then x 7→ xp is an isomorphism M →
Mp.

1.5 Finite-dimensional von Neumann algebras

Although we are interested in II1 factors and subfactors, which are necessary

infinite-dimensional, tools from finite-dimensional von Neumann algebra theory
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are indispensable. Although this theory is very simple, it reappears extensively

in later chapters, so we dedicate a sizable amount of space to building familiarity.

First, we describe the structure of a finite-dimensional von Neumann algebra.

Any such algebra is a direct sum of finite-dimensional type I factors, which are

isomorphic to matrix algebras.

Definition 1.5.1. If M is a von Neumann algebra, a nonzero projection p ∈ M

is said to be minimal if, for all projections q ∈M , q ≤ p implies q = p or q = 0.

Definition 1.5.2. A factor M is of type I if M contains a minimal projection,

or equivalently if M is isomorphic to B(H) for some Hilbert space H.

See [Jon09, 4.2.1] for a proof of the equivalence. One direction is easy: B(H)

has trivial centre, and the projections of rank 1 in B(H) are minimal.

Definition 1.5.3. A type In factor is a type I factor that is isomorphic toMn(C)
(if n is finite) or B(H) for infinite-dimensional H (if n = ∞).

Now we decompose an arbitrary finite-dimensional von Neumann algebra M .

Observe that Z(M) ∼= C⊕m for some m ∈ N. One can prove this elementarily

[Jon09, 4.2.1,4.4.1], or by noting that Z(M) ∼= L∞(X), then proving X is an

atomic measure space.

Let P be the set of minimal projections for Z(M). These are identified with

direct sums with 1 in one component and 0 in the rest. It’s clear that P is a set

of mutually orthogonal projections and
∑

p∈P p = 1.

Definition 1.5.4. A minimal central projection for M is a projection p ∈ Z(M)

that is minimal in Z(M).

By the above remarks, we then obtain a decomposition.

Theorem 1.5.5. Suppose M is a finite-dimensional von Neumann algebra, and

P is the set of minimal central projections of M . Then, M can be written as a

direct sum of finite-dimension type I factors:

M =
⊕
p∈P

Mp. (1.1)

Moreover, Mp is a simple ideal for each p ∈ P .

Proof. As
∑

p∈P p = 1, the decomposition is immediate. Mp is a factor by

Lemma 1.4.4. BecauseMp is finite-dimensional, it contains a minimal projection.

Therefore,Mp is a finite-dimensional type I factor. It follows thatMp ∼= Mnp(C)
for some np ∈ N, and hence it is simple; it is an ideal because p is central inM .
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Definition 1.5.6. Suppose M is a finite-dimensional von Neumann algebra and

P is its set of minimal central projections (MCPs). The dimension vector of M

is n⃗M := (nM
p )p∈P ∈ NP , where nM

p ∈ N is the integer such that Mp is type InM
p
.

If P is ordered, we identify n⃗M with a column vector.

It follows from Definition 1.5.3 and Theorem 1.5.5 thatM is (non-canonically)

isomorphic to
⊕

p∈P MnM
p
(C). It is then clear that the algebraic data of a finite-

dimensional M is completely encoded by the vector n⃗M .

Finite-dimensional inclusions

Besides lone von Neumann algebras, we extensively deal with inclusions N ⊂M .

Whilst a vector encodes a lone algebra, a matrix encodes an inclusion.

Theorem 1.5.7. Suppose N ⊂M is an inclusion of finite-dimensional von Neu-

mann algebras, where P (resp. Q) is the set of minimal central projections of N

(resp. M). Let ι : N →M denote the inclusion map. There exist unique integers

λpq ∈ N for p ∈ P, q ∈ Q, and a choice of isomorphisms of N onto
⊕

p∈P MnN
p
(C)

and M onto
⊕

q∈QMnM
q
(C) such that ι : N →M is given by:

x =
⊕
p∈P

xp 7−→
⊕
q∈Q

(⊕
p∈P

x⊕λpq
p

)
.

Definition 1.5.8. ΛM
N := (λpq)p∈P,q∈Q is the inclusion matrix of the pair N ⊂M ,

where the rows are indexed by the set P and the columns are indexed by Q.

See [Jon09, pp28-29] for a proof. The result is best illustrated by example.

Example 1.5.9. Suppose that n⃗N = (1, 2, 4) and n⃗M = (5, 8). By Definition

1.5.6, this means that N ∼= M1(C)⊕M2(C)⊕M4(C), and M ∼= M5(C)⊕M8(C).
Suppose the inclusion matrix of N ⊂ M is given by (1.2). Then Theorem 1.5.7

states that the inclusion ι : N →M is identified with the map of (1.3).

ΛM
N =

3 0

1 2

0 1

 . (1.2)

ι : (a⊕ b⊕ c) 7→


a

a

a

b

⊕

b b

c

 (1.3)

where a ∈M1(C), b ∈M2(C), c ∈M4(C). (Empty entries are zero.)



1.5. FINITE-DIMENSIONAL VON NEUMANN ALGEBRAS 13

The (p, q)th entry of the inclusion matrix (i.e. λpq) counts the ‘number of

copies’ of the Np appearing in Mq. For example, in (1.2), we see that λ2,1 = 1

and λ2,2 = 2, which corresponds to the one copy of b and two copies of b in the

two components of (1.3), respectively. We can recast this information as a graph.

Definition 1.5.10. Suppose P (respectively Q) is the set of minimal central

projections of N (respectively M). Then the Bratteli diagram of the inclusion

N ⊂M , denoted by βM
N , is the bipartite graph5 with left vertices P , right vertices

Q, and λpq edges drawn from p to q.

3

1

2

1

Figure 1.1: The Bratteli diagram associated to the inclusion map (1.3).

In graph theory, ΛM
N is called the biadgacency matrix6 of βM

N . As a bipartite

graph is uniquely specified by its biadjacency matrix, either the pair
(
ΛM

N , n⃗
N
)

or the pair
(
βM
N , n⃗

N
)
encodes all the algebraic data of N ⊂ M . (The vector n⃗M

is unneeded as it can be recovered using Lemma 1.5.11.)

These objects encode constraints on the inclusion map. Inclusions of von

Neumann algebras are by definition unital. This means that the inclusion map

must ‘fill’ all diagonals of M . As inclusions are also injective, every component

of N must appear in at least one component of M . The following map fails to be

an inclusion map on both counts:

ι : (a⊕ b⊕ c) 7→

a b

0



b

b

b

b


By counting dimensions, unitality implies

∑
p∈P n

N
p λpq = nM

q , i.e. n⃗N ·ΛM
N = n⃗M .

In particular, ΛM
N cannot have a column of zeroes. Injectivity implies every row

of ΛM
N is nonzero. This translates to the following pair of constraints on the

inclusion matrix and Bratteli diagram.

5Henceforth ‘graph’ refers to an undirected multigraph (i.e., multiple edges are allowed).
6Not to be confused with the adjacency matrix.



14 CHAPTER 1. BACKGROUND

Lemma 1.5.11. The inclusion matrix ΛM
N has no trivial rows or columns. More-

over, n⃗N · ΛM
N = n⃗M .

Lemma 1.5.12. The Bratteli diagram βM
N has no isolated vertices.

The inclusion matrix allows us to visualise the relationship between N ⊂ M

and the ‘dual inclusion’ M ′ ⊂ N ′.

Proposition 1.5.13. Suppose N ⊂ M is an inclusion of finite-dimensional von

Neumann algebras on H. Then ΛN ′

M ′ = (ΛM
N )T .

Example 1.5.14. We omit the proof and give an example. Let n⃗N = (2, 4),

n⃗M = (14), and let ΛM
N be the 2 × 1 matrix (3, 2). The commutant depends on

the space M acts on7; assume M acts on C14 so we can identify M spatially with

M14(C). Then an arbitrary element x ∈ N is given by

x =


a

a
a

b
b

 =
(
a⊗ I3

b⊗ I2

)

where a ∈ M2(C), b ∈ M4(C). Then an arbitrary element y ∈ N ′ is given as

follows, where c ∈M3(C), d ∈M2(C).

y =
(
I2 ⊗ c

I4 ⊗ d

)
Hence N ′ ∼= M3(C) ⊕ M2(C). As M = M14(C), its commutant on C14 is the

scalar multiples of the identity, i.e. M ′ ∼= M1(C). Hence three copies of M ′ are

included in the first simple summand of N ′, and two copies are included in the

second summand. That is, ΛN ′

M ′ = (3, 2)T , as required.

We will use these combinatorial facts frequently. To summarise: a finite-

dimensional von Neumann algebraN is fully described by n⃗N whereas an inclusion

N ⊂M is fully described either by (n⃗N ,ΛM
N ) or (n⃗N , βM

N )

1.6 Tracial von Neumann algebras

The remainder of this chapter has more direct importance to subfactor theory

than the preceding sections. In particular, the material of this section (Section

1.6) will be used extremely extensively.

7In generalM can act on C14k for k ∈ N, in which case we would need to identifyM spatially

with M14(C)⊗ Ik.
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The next family of von Neumann algebras that we consider are von Neumann

algebras equipped with a (nice) trace, of which II1 factors are a subfamily. The

presence of a trace confers an enormous amount of extra structure.

Definition 1.6.1. Suppose M is a von Neumann algebra and ϕ : M → C is a

linear functional.

• ϕ is positive if ϕ(x∗x) ≥ 0 and ϕ(x∗) = ϕ(x) for all x ∈M .

• ϕ is faithful if ϕ(x∗x) = 0 =⇒ x = 0 for all x ∈M .

• ϕ is normalised if ϕ(1) = 1.

• ϕ is a trace if ϕ(xy) = ϕ(yx) for all x, y ∈M .

Definition 1.6.2. A tracial von Neumann algebra is a pair (M, tr) where M is a

von Neumann algebra and tr : M → C is a positive faithful normal8 normalised

trace.

If (M, tr) is a tracial von Neumann algebra, we typically leave the trace im-

plicit by writing “M is a tracial von Neumann algebra”. However, despite this

abbreviation, the trace is considered part of the data of the object. To refer to

the trace on M that was left implicit, we will write trM .

We require that morphisms of tracial von Neumann algebras preserve the

trace. In particular, inclusions must be trace-preserving.

Definition 1.6.3. A tracial or trace-preserving inclusion is a pair (N ⊂ M, tr),

where N ⊂ M is an inclusion of von Neumann algebras, and tr : M → C is a

positive faithful normal normalised trace.

Note that a tracial inclusion is of course equivalent to a pair of tracial von

Neumann algebras (N, trN), (M, trM) such that N ⊂M and trM extends trN . We

will study tracial inclusions extensively throughout the thesis, as II1 subfactors

are examples of tracial inclusions. (See Definition 1.8.1.)

Standard form of a tracial von Neumann algebra

Traciality is a powerful condition. Chiefly, it unlocks the GNS construction9,

a method to build a standard form representation for a tracial von Neumann

8Equivalently, ultraweakly continuous, by Lemma 1.2.11.
9We present a special case of the GNS construction that is relevant to this thesis. The

general GNS construction takes as input (M,ϕ), where ϕ : M → C only needs to be positive

and normalised.
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algebra. For an analogy, consider the abelian von Neumann algebra L∞(X,µ).

The algebra L∞(X,µ) has a canonical action on the vector space L∞(X,µ) by

left multiplication, i.e. f · g := fg. Moreover, a natural inner product on the

vector space L∞(X,µ) is the L2 inner product ⟨f, g⟩L2 =
∫
X
gfdµ.

This generalises to an arbitrary tracial von Neumann algebra (M, tr), where

the trace tr plays the role of the integral
∫
dµ. Let M̂ = {x̂ : x ∈ M} denote

M viewed as a vector space, and have M act on M̂ by left multiplication, i.e.

a · b̂ := âb. Define an inner product on M̂ as follows:

Definition 1.6.4. Let ⟨·, ·⟩L2 : M̂ × M̂ → C be defined by ⟨x̂, ŷ⟩L2 := tr(y∗x),

and ∥x̂∥L2 := ⟨x, x⟩1/2L2 for all x ∈ M . Let L2(M, tr) denote the completion of M̂

with respect to ⟨·, ·⟩L2 .

The form ⟨·, ·⟩L2 is an inner product as tr is positive and faithful. We abbre-

viate L2(M, tr) to L2(M), but we are careful to remember that L2(M) depends

on the choice of trace.

A fact in von Neumann algebra theory is that the Hölder-like inequality

∥x̂y∥L2 ≤ ∥x∥∥ŷ∥L2 holds for any x, y in a tracial von Neumann algebra [Jon09,

6.2.6]. Note here ∥x∥ denotes the operator norm of x, and not an L2 norm.

This means the action of any element x on M̂ , ŷ 7→ x̂y, is always bounded, and

hence extends to a unique bounded operator on L2(M). This gives a canonical

representation of M .

Theorem 1.6.5. (Standard form)

Suppose M is a tracial von Neumann algebra. Then M has a unique faith-

ful representation on L2(M) such that M acts on the dense subspace M̂ by left

multiplication, i.e. x · ŷ = x̂y for all ŷ ∈ M̂ .

Moroever, the trace on M is given by trM(x) = ⟨x1̂, 1̂⟩L2.

See [Arv76, p27-30] [Tak02, 3.12]. (The last assertion is easy.) The standard

form of M is easy to work with, as we can explicitly describe the action of

any x ∈ M on the dense subspace M̂ . Henceforth, unless we specify a choice

of representation for a tracial von Neumann algebra M , we imply that M is

identified with a subalgebra of B(L2(M)).

Properties of the standard form

We summarise the key structures of the standard form, which we use extensively.

Theorem 1.6.5 uses all of the hypotheses on tr, except for the fact that is a

trace. However, the fact that tr is a trace equips L2(M) with a key piece of extra
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structure. Consider the ∗-operation on M , viewed as an antilinear map M̂ → M̂

sending x̂ to (̂x∗). Becaue tr is cyclic, ∥x̂∥2L2 = tr(x∗x) = tr(xx∗) = ∥x̂∗∥2L2 , and

hence the ∗-operation is an isometry in the L2-norm. Hence it extends to L2(M).

Definition 1.6.6. J : L2(M) → L2(M) denotes the unique antiunitary involu-

tion such that Jx̂ = (̂x∗) for all x ∈ M̂ .

Lemma 1.6.7. Conjugation by J , denoted by Ad J : x 7→ JxJ , is an injective

antilinear von Neumann algebra morphism.

The proof is easy: one readily checks that Ad J respects addition, multiplica-

tion, and adjoints, but conjugates scalars. The existence of this map means M

not only acts on L2(M) by left multiplication, but also right multiplication.

Proposition 1.6.8. For all x ∈ M , there exists a unique bounded operator on

L2(M) extending the map ŷ 7→ ŷx, and it is given by Jx∗J .

Proof. Jx∗J is bounded because J, x are. To see that it is the requisite map,

observe that Jx∗Jŷ = Jx∗(̂y∗) = J (̂x∗y∗) = ŷx.

We call the operator extending ŷ 7→ ŷx the right-multiplication operator by

x, and write ξ · x to represent it acting on ξ ∈ L2(M). This leads to an explicit

expression for the commutant of M on L2(M).

Lemma 1.6.9. JMJ =M ′, where M ′ is the commutant of M on L2(M).

Right-multiplication commutes with left-multiplication, so JMJ ⊂M ′. Prov-

ing the reverse inclusion amounts to proving that every element of the commutant

M ′ is given by a right-multiplication operator; we defer it to [Jon09, 9.1.6].

Another key property of the standard form is that an inclusion of tracial von

Neumann algebras extends to an inclusion of L2 spaces.

Proposition 1.6.10. If N ⊂M is an inclusion of tracial von Neumann algebras,

then the inclusion map ι : N̂ → M̂ is an isometry, and extends to an isometry

ι : L2(N) → L2(M).

Proof. The inclusion is trace-preserving by Definition 1.6.2. Hence ι : N̂ → M̂ is

an isometry for ∥ · ∥L2 , and so extends to an isometry L2(N) → L2(M).

We can therefore write L2(N) ⊂ L2(M).

Our final result is a way to intrinsically identify the dense subspace M̂ inside

L2(M). For any ξ ∈ L2(M), define a right-multiplication map Rξ : M̂ → L2(M)
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by Rξ(ŷ) = yξ. We say ξ is a right-bounded vector if Rξ is bounded with respect

to the norm ∥ · ∥L2 on both spaces. Equivalently, ξ is right-bounded if Rξ extends

to an operator in B(L2(M)). This gives our characterisation of M̂ .

Proposition 1.6.11. M̂ equals the set of right-bounded vectors in L2(M).

Proof. If x̂ ∈ M , then Rx̂ is the right-multiplication operator by x, which is

bounded by Proposition 1.6.8. If ξ is a right-bounded vector, then ξ ∈ M̂ if and

only if Rξ equals a right-multiplication operator by some element of M , if and

only if Rξ ∈ JMJ = M ′. For all ẑ ∈ M̂ , Rξ(yẑ) = Rξ(ŷz) = yzξ = y(Rξẑ).

Hence Rξ commutes with M on the dense subspace M̂ .

We thus have an ample selection of tools with which to probe a tracial von

Neumann algebra M , so long as we represent it in standard form on L2(M).

1.7 II1 factors

We have given an overview of several important families of von Neumann algebras;

we now specialise to the specific family of interest to this thesis. Recall that the

Murray-von Neumann classification of factors (Theorem 1.4.3) characterises II1

factors as finite factors with Murray-von Neumann order type [0, 1]. However,

they have an equivalent, seemingly unrelated definition.

Definition 1.7.1. A II1 factor M is an infinite-dimensional tracial factor.

A priori, this means that a II1 factor is a pair (M, tr) where tr is a positive

faithful normal normalised trace. However, M has a unique such trace.

Theorem 1.7.2. Suppose (M, tr) is a II1 factor and t̃r is a normal normalised

trace. Then tr = t̃r.

That is, the structure of a II1 factor as a tracial object is determined by its

underlying structure as a von Neumann algebra. See [Tak02, V.2.6] for a proof.

This is an example of what makes II1 factors so interesting – not only do they

inherit the considerable structure of factors (described in Section 1.4) and tra-

cial von Neumann algebras (Section 1.6), but the structures interact in powerful

ways. To see another example, recall from Proposition 1.4.2 that the Murray-von

Neumann equivalence classes in a factor are totally ordered. In fact, the order in

a II1 factor is specified by the trace.
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Proposition 1.7.3. Suppose M is a II1 factor. Then tr(p) ≤ tr(q) ⇐⇒ p ⪯ q.

Moreover, {tr(p) : p ∈M is a projection.} = [0, 1].

This means that, indeed as stated in the classification, a II1 factor has Murray-

von Neumann order type [0, 1]. Notice the similarity of II1 factors to L∞([0, 1])

(equipped with the trace f 7→
∫ 1

0
fdx). A II1 factor and L∞([0, 1]) both contain

projections of arbitrary real-valued trace in [0, 1].

The coupling constant

One of Vaughan Jones’s innovations in [Jon83] was the index, a measure of relative

size for a II1 factor inside another II1 factor. He leveraged an existing measure

of size introduced by Murray and von Neumann: the coupling constant dimM H,

which measures the size of a representation of M on H. To define this, we

need a common setting in which to compare representations of M . Note that

representations of factors are faithful, as factors have no strongly-closed ideals.

By virtue of being tracial, a II1 factor has a standard form representation on

L2(M) (Theorem 1.6.5). Consider the ‘amplified’ space L2(M) ⊗ ℓ2(N), where
the representation of M on L2(M) ⊗ ℓ2(N) is the map M → B(L2(M) ⊗ ℓ2(N))
given by x 7→ x⊗ 1. The amplification of L2(M) is ‘large enough’ to contain any

representation of M as a subrepresentation.

Lemma 1.7.4. Suppose a II1 factor M has a representation on H. There exists

an isometry u : H → L2(M)⊗ ℓ2(N) such that u(x · ξ) = x · (uξ) for all ξ ∈ H.

We say that a map u satisfying the properties given above is anM-intertwining

isometry. See [Jon09, 10.1.1] for a proof of the above. Note u is a unitary of H
onto imu, and uu∗ is the projection onto imu. Hence Lemma 1.7.4 implies that

M acting on H is spatially isomorphic to (uu∗)(M⊗1) acting on imu. Informally,

we measure the H-representation’s ‘size’ by the ‘size’ of the subspace imu, where

‘size’ is represented by a trace of uu∗. We sketch the construction of this trace.

As u commutes with the M -action, so must uu∗, and so uu∗ ∈ (M ⊗ 1)′.

One can show that(M ⊗ 1)′ is a II∞ factor. II∞ factors are distinguished from

II1 factors by having traces that are not globally defined and can take the value

+∞ [Jon09, p58]. We will not define or work with II∞ theory in any generality;

instead, we sketch an ad hoc argument that (M ⊗ 1)′ has a trace. First note that

the commutant distributes over the tensor product as follows:

(M ⊗ 1)′ =M ′ ⊗ B(ℓ2(N))



20 CHAPTER 1. BACKGROUND

where M ′ here is the commutant of M on L2(M). But the commutant of M in

standard form on L2(M) is JMJ (Lemma 1.6.9), so we have that

(M ⊗ 1)′ = JMJ ⊗ B(ℓ2(N)).

An element x ∈ JMJ ⊗ B(ℓ2(N)) is represented as an infinite matrix x =

(JxijJ)i,j∈N, for xij ∈ M . We attempt to define tr(M⊗1)′(x) :=
∑∞

i=1 trM(xii),

where trM is the trace on M . This sum converges in [0,∞], and is independent

of the choice of matrix representation, when x is positive. This includes when x

is a projection [Jon09, p58] [Jon09, 9.1.11].

Then tr(uu∗) is well-defined, and hence we use it to measure the ‘size’ of the

H-representation. This turns out to be independent of the construction of u. If

v : H → L2(M)⊗ℓ2(N) is anotherM -intertwining isometry, then note that u∗u =

1 = v∗v in B(H). Then tr(uu∗) = tr((uv∗)(vu∗)) = tr((vu∗)(uv∗)) = tr(vv∗).

Definition 1.7.5. Suppose a II1 factor M has a representation on H. Then the

coupling constant of this representation is dimM(H) := tr(uu∗) ∈ (0,∞], where

u : H → L2(M)⊗ ℓ2(N) is any M -intertwining isometry.

Despite the notation, the coupling constant is an invariant of the representa-

tion and not of H. In particular, it is invariant under spatial isomorphisms.

Example 1.7.6. dimM (L2(M)⊗ ℓ2(N)) = ∞ and dimM L2(M) = 1.

We establish some important properties of the coupling constant, in order to

set up the properties of the index. First, we note that the coupling constant

detects the finiteness of the commutant (recall Definition 1.3.5).

Proposition 1.7.7. If M acts on H, then dimM H < ∞ if and only if M ′ (the

commutant of M on H) is finite, if and only if M ′ is a II1 factor.

A proof is found in [Jon09, 9.1.9]. Heuristically, if H is ‘larger’, there are

‘more’ operators on H and hence ‘more’ operators in the commutant.

We also state the following without proof; see [Jon09, 10.2.1]. To interpret

the first two results: if M has a representation on H, then clearly pMp has a

representation on pH given by restricting each x ∈M to pH.

Proposition 1.7.8. SupposeM is a II1 factor with a representation on H. Then,

1. If p ∈M , then dimpMp(pH) = trM(p)−1 dimM(H).

2. If dimM H <∞ and p ∈M ′, then dimMp(pH) = trM ′(p) dimM H

3. If dimM H <∞, then (dimM H)(dimM ′ H) = 1.

This is enough background for us to move on to the theory of II1 subfactors.
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1.8 II1 subfactors

Definition 1.8.1. A II1 subfactor is an inclusion of II1 factors N ⊂M .

A priori, since a II1 factor is a tracial object, we should require a II1 subfactor

to be a tracial inclusion (Definition 1.6.3). However, due to the uniqueness of

the trace (Theorem 1.7.2), any inclusion of II1 factors is trace-preserving.

As factors have no strongly-closed ideals, a morphism between factors is injec-

tive. Hence II1 subfactor theory is really the theory of morphisms of II1 factors.

Althought II1 factor theory originated with Murray and von Neumann, the

study of II1 subfactors was not well systematised until Vaughan Jones’s ground-

breaking paper ‘Index for Subfactors’ [Jon83]. In it, Jones introduced the first

major invariant for a II1 subfactor N ⊂ M , called the index and denoted by

[M : N ]. In the same paper, Jones proved the first classification theorem for

II1 subfactors, using the index – a proof which we will revisit with modern tech-

niques. Therefore, our account of modern II1 subfactor theory must begin with

the definition of the index.

The index

The notation [M : N ] is chosen by analogy to the group-theoretic index [G : H]

of a subgroup H ⊂ G or the field-theoretic degree [E : F ] of a field extension

E/F . Recall that the degree of E/F is defined by [E : F ] := dimF E, where E

is viewed an F -vector space. By restricting the standard representation of M on

L2(M) to a representation of N , we can make an analogous definition:

Definition 1.8.2. The index of N ⊂M is [M : N ] := dimN L
2(M).

The index has a number of important properties, some of which resemble that

of the group-theoretic index or field-theoretic degree.

Proposition 1.8.3. [Jon83, 2.1.8,2.2.1]

Suppose N ⊂M is a II1 subfactor.

1. [M :M ] = 1 and [M : N ] ∈ [1,∞).

2. [M : N ] <∞ if and only if N ′, the commutant of N on L2(M), is finite.

3. If H is any representation of M with dimM(H) < ∞, then [M : N ] =

dimN(H)/ dimM(H).
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4. If p ∈ N ′ ∩M is a projection, then [pMp : Np] = [M : N ] trM(p) trN ′(p).

5. If [M : N ] <∞, then [M : N ] = [N ′ :M ′].

6. If P ⊂ N ⊂M ⊂ are II1 factors, then [M : P ] = [M : N ][N : P ].

Proof. As L2(N) ⊂ L2(M), it is easy to show that the index [M : N ] =

dimN L
2(M) ≥ dimN L

2(N) = 1, proving part 1. Part 2 is immediate from

Proposition 1.7.7. For part 3, see [Jon83, 2.1.7] or [Jon09, 19.2.3]. We sketch the

idea. Note the identity reduces to Definition 1.8.2 when H = L2(M). If H is an-

other representation ofM , one can show it differs from L2(M) by an amplification

(tensoring by ℓ2(N)) and a cutdown. Both leave the the ratio dimN(H)/ dimM(H)

invariant. Parts 4,5, and 6 are then straightforward calculations using part 3 and

Proposition 1.7.8.

This concludes our elementary study of the index. In the following chapter,

we will prove a major theorem about it.

1.9 Conclusion

This concludes the preliminary knowledge required for our study of II1 subfac-

tor theory. We briefly highlight the most important parts. The combinatorial

description of finite-dimensional inclusions N ⊂M , using inclusion matrices and

Bratteli diagrams, will be used frequently. Also crucial is the standard form of

M on L2(M), which we use to define the key technique of [Jon83], the basic con-

struction. Finally, the facts about the coupling constant and index (Proposition

1.7.8 and Proposition 1.8.3) are very important.

So far, we have only developed one theoretical tool which is specific to sub-

factor theory (the index). In the following chapter, we will develop many more

techniques, in order to prove the Jones index theorem.

Our account of II1 subfactor theory now begins in earnest.



Chapter 2

The basic construction and index

theorem

2.1 Introduction

We are equipped to state the first major theorem in modern II1 subfactor theory.

In the same paper [Jon83] where Jones introduced the index, he determined the

set of values that it can take. It is astonishing that the index can take any value

above 4, but the set of indices below 4 is a discrete set.

Theorem 2.1.1. (Jones index theorem) [Jon83, 4.3.1,4.3.2]

{[M : N ] : N ⊂M is a II1 subfactor.} = {4 cos2(π/n) : n ≥ 3} ∪ [4,∞]. (2.1)

n 4 cos2(π/n) n 4 cos2(π/n)

3 1 6 3

4 2 7 2 + 2 cos(2π/7)

5
(

1+
√
5

2

)2
(Square of golden ratio) 8 2 +

√
2 (Silver ratio + 1)

Table 2.1: The six smallest index values in the ‘discrete series’.

Jones proved that the index of any subfactor is constrained to these values,

and moreover constructed a II1 subfactor for every index value in (2.1). Both

directions of the proof rely on a theoretical tool introduced by Jones in the same

paper [Jon83, pp7-8]: the basic construction. The basic construction is excep-

tionally important to subfactor theory; it has become one of the central tools of

the field.

23
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In this chapter, we introduce the basic construction, and leverage it to prove

both directions of the index theorem.

If N ⊂M is an inclusion of tracial von Neumann algebras (henceforth ‘tracial

inclusion’ or ‘trace-preserving inclusion’), the basic construction is a procedure

that adjoins a projection eN to M to form a new von Neumann algebra M1 =

⟨M, eN⟩. In some circumstances, the basic construction can be iterated to produce

a tower of algebras N ⊂M ⊂M1 ⊂M2 ⊂ . . .. Called the Jones tower, if it exists

and is unique, then it is the ideal setting for studying N ⊂ M . We state a

theorem (the tower-building theorem, Theorem 2.3.7) that unifies approaches to

proving existence and uniqueness of Jones towers.

A Jones tower contains a family of projections {ei} satisfying what are now

called the Jones relations (also called Temperley-Lieb relations). These relations

have considerable emergent structure, so much that they spawned an independent

field of study outside II1 subfactor theory – the theory of Temperley-Lieb algebras.

Temperley-Lieb algebras are signficant as they are isomorphic to diagram algebras,

allowing elegant pictorial reasoning to substitute for algebraic tools.

We develop some pictorial tools and leverage them to prove the index theorem.

We present the perspective that the index theorem is not wholly a fact in subfactor

theory, but is strongly connected to Temperley-Lieb algebra theory.

2.2 The basic construction

This section draws on [Jon83], [Pop90], and [JS97].

Although the basic construction is a widely-used tool for working with II1

subfactors, it applies more generally to any tracial inclusion (and we will need

this level of generality to prove the index theorem). In this section, assume that

(N ⊂M, tr) is a tracial inclusion of von Neumann algebras (see Definition 1.6.2).

As usual we abbreviate this object to N ⊂M , but we consider tr part of its data.

Identify M as a von Neumann subalgebra of B(L2(M)) acting by left multi-

plication (Theorem 1.6.5). By Proposition 1.6.10, L2(N) ⊂ L2(M), and hence

there exists a projection eN : L2(M) → L2(N), called a Jones projection. We

adjoin eN to M to form a new von Neumann algebra.

Definition 2.2.1. The basic construction of a tracial inclusionN ⊂M is ⟨M, eN⟩,
the von Neumann algebra in B(L2(M)) generated by M ∪ {eN}.

That is, ⟨M, eN⟩ = (M ∪ {eN})′′. We write N ⊂ M ⊂eN ⟨M, eN⟩ to indicate

that these three algebras are a ‘basic construction triplet’. The superscript eN
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indicates that eN is an important part of the data.

To understand ⟨M, eN⟩, we must first understand eN . A priori, eN maps

L2(M) onto L2(N), but we can say more. It maps the subspace of L2(M) iden-

tified with M to the subspace of L2(N) identified with N .

Proposition 2.2.2. eNM̂ = N̂ .

Proof. eN acts as the identity on N̂ , so obviously N̂ ⊂ eNM̂ .

Obviously eNM̂ ⊂ L2(N). Now let x̂ ∈ M̂ . By Proposition 1.6.11, to show

eN x̂ ⊂ N̂ , we can equivalently show that eN x̂ is a right-bounded vector in L2(N).

That is, we’ll show ReN x̂ : N̂ → L2(N) is bounded. Let ŷ ∈ N̂ be arbitrary.

∥ReN x̂ŷ∥L2 = ∥yeN x̂∥L2 = ∥eNyx̂∥L2 = ∥eN ŷx∥L2 .

The second equality holds as L2(N) is y-invariant, and so y commutes with eN .

∥ReN x̂ŷ∥L2 ≤ ∥ŷx∥L2 = ∥(Jx∗J)ŷ∥L2 ≤ ∥x∥∥ŷ∥L2

where we have used the fact that Jx∗J is the right-multiplication operator by x,

and is bounded with the same norm as x, by Proposition 1.6.8. Hence ReN x̂ is

bounded on L2(N), and so eN x̂ is a right-bounded vector in L2(N), which implies

eN x̂ ∈ N̂ . Therefore eNM̂ ⊂ N̂ .

Hence, eN can be be viewed as a map M → N , which we distinguish from eN

by denoting it as EN .

Definition 2.2.3. If N ⊂ M is an inclusion of tracial von Neumann algebras,

define EN :M → N by the equation ÊN(x) = eN x̂ for all x ∈M .

It is clear that EN is linear and acts as the identity on N , but otherwise its

properties are not obvious.

In fact EN : M → N is a tr-preserving conditional expectation. Conditional

expectations are a fundamental concept in operator algebras. Given von Neu-

mann algebras A ⊂ B, a conditional expectation E : B → A is a map sending

x ∈ B to its ‘best approximation’ in A.

The prototypical example is the conditional expectation in probability theory.

Let X : Ω → R be a random variable on a probability space Ω with probability

measure P. The conditional expectation of X, conditioned on a subalgebra A ⊂
L∞(Ω), is a random variable denoted by E[X|A]. It represents the best approx-

imation to X provided we can measure variables in A but nothing else. For ex-

ample, if A is singly-generated by Y , then E[X|A] =∑y∈imY

1Y −1(y)

P(Y=y)

∫
Y −1(y)

XdP.
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It is straightforward to show that E[Y X|A] = Y E[X|A]. More generally, E[·|·] is
defined so that, even if A isn’t singly generated, this identity holds for all Y ∈ A.

The conditional expectation in operator algebra theory generalises this identity.

Definition 2.2.4. A conditional expectation of M onto N is a positive unital

linear map E :M → N that additionally satisfies the bimodule property

E(axb) = aE(x)b for all x ∈M , a, b ∈ N .

However, the map E[·|·] in probability theory has more structure than is cap-

tured by Definition 2.2.4. It depends on the choice of integral
∫
Ω
dP : L∞(Ω) → C.

It is also compatible with the integral; it’s either in the definition of E[·|·] or a

consequence of its construction that
∫
Ω
E[X|A]Y dP =

∫
Ω
XY dP for all Y ∈ A.

To generalise this integral-compatibility to a von Neumann algebra, replace the

integral with the trace.

Definition 2.2.5. A conditional expectation E : M → N is tr-preserving if, for

all x ∈M , y ∈ N ,

tr(E(x)y) = tr(xy). (2.2)

We can now prove our claim about EN .

Theorem 2.2.6. EN :M → N is a tr-preserving conditional expectation.

To prove this, we prove that EN satisfies Definition 2.2.4 and the equation

(2.2). In fact, EN not only satisfies (2.2) but is uniquely characterised by it.

Proposition 2.2.7. For all x ∈M , EN(x) is the unique element of N such that

tr(EN(x)y) = tr(xy) for all y ∈ N . (2.3)

Proposition 2.2.7 turns out to imply Theorem 2.2.6, so we prove it first.

Proof. To show (2.3) holds, let x ∈M, y ∈ N . Then,

tr(EN(x)y) = ⟨ÊN(x), ŷ∗⟩ = ⟨eN x̂, ŷ∗⟩ = ⟨x̂, eN ŷ∗ = ⟨x̂, ŷ∗⟩ = tr(xy),

where the second equality is by Definition 2.2.3, the third as eN is a projection,

and the fourth as ŷ∗ ∈ N̂ ⊂ L2(N).

To prove uniqueness, suppose z ∈ N satisfies tr(zy) = tr(xy) for all y ∈ N .

We need to show z = EN(x) or equivalently ẑ = eN x̂. To do this, it suffices to

show x̂− ẑ ∈ L2(N)⊥. Let ŷ ∈ N̂ be arbitrary. Then,

⟨x̂− ẑ, ŷ⟩ = ⟨x̂, ŷ⟩ − ⟨ẑ, ŷ⟩ = tr(xy∗)− tr(zy∗) = tr(xy∗)− tr(xy∗) = 0.

As N̂ is dense in L2(N), x̂− ẑ ∈ L2(N)⊥, and we’re done.
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We can now sketch a proof of Theorem 2.2.6.

Proof. (Theorem 2.2.6)

We need only show that EN is a conditional expectation, as Proposition 2.2.7

implies it is tr-preserving. All of the conditions of Definition 2.2.4 can be proven

by leveraging the unique characterisation of EN in Proposition 2.2.7, so we present

only the proof of the bimodule property to illustrate the technique.

Let x ∈M and a, b, y ∈ N . Then,

tr(aEN(x)by) = tr(EN(x)bya) = tr(xbya) = tr((axb)y),

where the second equality is due to Proposition 2.2.7. This holds for all y ∈ N ,

and aEN(x)b ∈ N , so aEN(x)b = EN(axb) by the unique characterisation.

In fact, by combining Theorem 2.2.6 and Proposition 2.2.7, we see that EN

is the unique tr-preserving conditional expectation M → N . It enjoys several

properties reminiscent of probability-theoretic expectations.

Proposition 2.2.8. EN acts as the identity on N , and EN :M → N is a normal

map. In addition, for all x ∈ M , and any tracial inclusion P ⊂ N , EN satisfies

the following.

tr(EN(x)) = tr(x). (2.4)

EN(x
∗) = EN(x)

∗. (∗-preserving) (2.5)

EN(x
∗)EN(x) ≤ EN(x

∗x). (Jensen inequality) (2.6)

EN(x
∗x) ≥ 0. Moreover, EN(x

∗x) = 0 =⇒ x = 0. (Positive-definite) (2.7)

EP (EN(x)) = EP (x). (Tower property) (2.8)

Proofs are found in [Kad04, p151]; see also [Ume54]. We omit them, as they

are either simple applications of the unique characterisation of EN (similar to the

proof of Theorem 2.2.6), or adaptations of standard probability-theoretic proofs.

Armed with a thorough understanding of EN , we can better understand the

the Jones projection eN and hence the basic construction ⟨M, eN⟩.

Abstract properties of the basic construction

The following are the most important relations between eN , N , and M .

Proposition 2.2.9. [Jon83]

1. eNxeN = EN(x)eN for all x ∈M .
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2. If x ∈M , then x ∈ N ⇐⇒ eNx = xeN .

Proof. For part 1, it suffices to show both sides agree on the dense subspace M̂

of L2(M). Let ŷ ∈ M̂ . Applying Definition 2.2.3 twice1,

eNxeN ŷ = eNx(EN(y))
̂ = (EN(xEN(y)))

̂ = (EN(x)EN(y))
̂ .

The last equality uses the bimodule property (Definition 2.2.4). But this is exactly

equal to EN(x)eN ŷ by Definition 2.2.3.

For the forward direction of part 2, suppose x ∈ N and let ŷ ∈ M̂ . Then,

xeN ŷ = (xEN(y))
̂ = (EN(xy))

̂ = eN x̂y = (eNx)ŷ,

so eN commutes with x. For the reverse direction, suppose x ∈ M commutes

with eN . Then, x̂ = xeN 1̂ = eNx1̂ = eN x̂, which implies x̂ ∈ eNM̂ = N̂ , by

Proposition 2.2.2.

Corollary 2.2.10. eNMeN = NeN .

Proof. EN surjects onto N , so this is immediate from Proposition 2.2.9(1).

For practical purposes, it is good to know an explicit dense ∗-subalgebra of

⟨M, eN⟩.

Lemma 2.2.11. M + spanMeNM = span{a + beNc : a, b, c ∈ M} is a dense

∗-subalgebra of ⟨M, eN⟩.

Proof. By definition, the ∗-subalgebra ⟨M, eN⟩alg generated by eN andM is dense

in ⟨M, eN⟩. As M ∪{eN} is ∗-closed, ⟨M, eN⟩alg is precisely the set of finite sums

of finite-length words in eN and M . As e2N = eN , such a word can be written to

alternate between M and eN .

By Corollary 2.2.10, we have that eNMeN = NeN ⊂ MeN . Using this fact,

any word is reducible to the form M,MeN , or eNM . As 1 ∈ M , the set of finite

sums of such words is M + spanMeNM . Hence M + spanMeNM is dense.

We demonstrate the value of this explicit dense set in the following proof.

As with any projection in a von Neumann algebra, it is important to know the

cutdown of ⟨M, eN⟩ by eN . Since eN ∈ ⟨M, eN⟩ and eN ∈ N ′ (by Proposition

2.2.9), Proposition 1.3.7 implies that NeN and eN⟨M, eN⟩eN are von Neumann

algebras. In fact, they are identical.

1Note that we writeˆas a superscript if it is applied to a very long expression.
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Proposition 2.2.12. NeN = eN⟨M, eN⟩eN and hence x 7→ xeN defines a von

Neumann algebra isomorphism of N onto eN⟨M, eN⟩eN .

Proof. Because eN ∈ N ′, Lemma 1.4.4 implies that x 7→ xeN is an isomorphism

of N onto its image. Hence it suffices to show the equality NeN = eN⟨M, eN⟩eN .
The inclusion NeN = eNNeN ⊂ eN⟨M, eN⟩eN is obvious. To prove the reverse

inclusion, it suffices to prove NeN contains a generating set for eN⟨M, eN⟩eN . By
Lemma 2.2.11, such a generating set is eN (M + spanMeNM) eN . Note this set

can be rewritten:

eN (M + spanMeNM) eN = eNMeN + span eNMeNMeN

= eNMeN + span (eNMeN)
2

= NeN + span(NeN)
2.

The last equality holds by Corollary 2.2.10. As NeN is an algebra, NeN +

span(NeN)
2 ⊂ NeN , and so NeN contains a generating set for eN⟨M, eN⟩1eN .

This shows that N and ⟨M, eN⟩ cannot be distinguished by their action on

the subspace L2(N). Their action on the full space L2(M) distinguishes them.

Corollary 2.2.13. eN is finite2 in ⟨M, eN⟩.

Proof. All tracial von Neumann algebras are finite. To see this, note 1 ≈ p implies

1 = uu∗ and p = u∗u for some partial isometry u, and therefore tr(1 − p) = 0,

which implies 1 = p by positivity of the trace.

N is tracial, so 1 is finite in N . By applying the above isomorphism, we find

that eN is finite in NeN = eN⟨M, eN⟩eN . By definition, eN is finite if and only

if eN ̸≈ p for any p < eN . But any p < eN belongs to both eN⟨M, eN⟩eN and

⟨M, eN⟩, so it follows that eN is finite in ⟨M, eN⟩.

These are most of the abstract algebraic properties necessary to probe the

basic construction. However, as alluded to above, it is also essential to understand

the spatial properties of its representation on L2(M).

Spatial properties of the basic construction

The Jones projection eN provides a neat formula for N and N ′. In this subsection,

commutants are taken with respect to the action on L2(M).

2Recall Definition 1.3.5.
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Lemma 2.2.14. N = (M ′ ∪ {eN})′ and N ′ = (M ′ ∪ {eN})′′.

Proof. It is easy to see that the commutant of a union is an intersection of com-

mutants. Then, (M ′∪{eN})′ =M ′′∩{eN}′ =M∩{eN}′. ButM∩{eN}′ = N , by

Proposition 2.2.9(2), proving the first equality. The second is then immediate.

These formulae are useful but arcane. We recast them into a more elegant form

by recalling the antiunitary extension of the ∗-operation, J : L2(M) → L2(M)

(Definition 1.6.6), and the injective antilinear morphism Ad J (Lemma 1.6.7).

Proposition 2.2.15. ⟨M, eN⟩ = JN ′J and ⟨M, eN⟩′ = JNJ .

In particular, ⟨M, eN⟩ (resp. ⟨M, eN⟩′) is spatially antilinearly isomorphic to

N ′ (resp. N).

We can visualise this result. Recall (Proposition 1.6.9) that Ad J relatesM to

M ′ by JMJ =M ′. Combined with the above, this means Ad J maps the triplet

N ⊂M ⊂ ⟨M, eN⟩ to the triplet ⟨M, eN⟩′ ⊂M ′ ⊂ N ′. See below:

N ′ ⟨M, eN⟩

M ′ M

⟨M, eN⟩′ N

Ad J

Ad J

Ad J

The vertical arrows are inclusions, and the horizontal arrows are antilinear

isomorphisms. In fact, as they are induced by antiunitary conjugation, they are

actually antilinear spatial isomorphisms. Owing to this diagram, we informally

call the basic construction ⟨M, eN⟩ the ‘reflection of N across M ’, a perspective

that provides much intuition.

Proof. (Proposition 2.2.15)

We first prove ⟨M, eN⟩ = JN ′J . From Lemma 2.2.14, we have that JN ′J =

J (M ′ ∪ {eN})′′ J . It can be shown that, because J is antiunitary and M ′ ∪ {eN}
is a self-adjoint set, the bicommutant theorem implies we can pull Ad J through

the double commutant:

JN ′J = (JM ′J ∪ {JeNJ})′′ = (M ∪ {eN})′′ = ⟨M, eN⟩ (2.9)

where the third equality holds as JM ′J = M and eN commutes with J because

L2(N) is J-invariant.
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It is also not too hard to show Ad J can be pulled through a commutant. Take

the commutant of (2.9) and pull Ad J through; this proves ⟨M, eN⟩′ = JNJ .

Ad J has a disadvantage in that it is defined spatially. However, it has an

equivalent abstract expression when restricted to a centre. This result is not in

[Jon83] but is in later works like [Pop90, p23].

Proposition 2.2.16. The map Ad J is an antilinear isomorphism of Z(N) onto

Z(⟨M, eN⟩) given by z 7→ z̃, where z̃ in Z (⟨M, eN⟩) is the unique element such

that z̃eN = z∗eN .

Proof. By Proposition 2.2.15,

JZ(N)J = J (N ′ ∩N) J = JN ′J ∩ JNJ = ⟨M, eN⟩ ∩ ⟨M, eN⟩′ = Z(⟨M, eN⟩)

so Ad J is an antilinear isomorphism of Z(N) onto Z(⟨M, eN⟩).
Let z ∈ Z(N). The map Ad J sends z to JzJ , so let z̃ := JzJ . To justify

the alternative characterisation, note that z̃eN = z∗eN is equivalent to z̃|L2(N) =

z∗|L2(N). As z ∈ Z(N), z∗ ∈ Z(N) as well, and hence left- and right-multiplication

by z∗ agree on L2(N). By Proposition 1.6.8, the right-multiplication operator

associated to z∗ is JzJ = z̃, so we have that z̃|L2(N) = z∗|L2(N).

To show z̃ is unique for this identity, suppose z′ ∈ Z(⟨M, eN⟩) is such that

z′eN = zeN . In particular, z′ ∈ ⟨M, eN⟩′ = JNJ , so z′ = JwJ for some w ∈ N .

In particular, ŵ∗ = JwJ 1̂ = z′1̂ = z′eN 1̂ = z∗eN 1̂ = ẑ∗, so w = z and hence

z′ = JwJ = JzJ = z̃.

This covers most of the properties of the triplet N ⊂M ⊂ ⟨M, eN⟩ which we

need to apply routinely. Next, we will consider iterating the basic construction

to create a tower of nested algebras.

2.3 Iterating the basic construction

This section introduces the Jones tower. Of all the subfactor-theoretic objects

introduced in this thesis, the Jones tower is by far the most important.

Given a tracial inclusion N ⊂M , we can perform the basic construction and

build ⟨M, eN⟩. A priori, ⟨M, eN⟩ isn’t tracial. However, if it can be equipped with

a (positive faithful normal normalised) trace that extends the trace of M , then

we can perform the basic construction on M ⊂ ⟨M, eN⟩ and build ⟨⟨M, eN⟩, eM⟩.



32 CHAPTER 2. THE BASIC CONSTRUCTION AND INDEX THEOREM

Under certain circumstances, we can iterate the basic construction ad infini-

tum to form a tower N ⊂ M ⊂ ⟨M, eN⟩ ⊂ ⟨⟨M, eN⟩, eM⟩ ⊂ . . . called the Jones

tower. This technique originated in [Jon83].

Definition 2.3.1. Suppose N ⊂ M is a tracial inclusion of von Neumann alge-

bras. Let M−1 = N,M0 =M , and M1 = ⟨M, eN⟩.
We say that a sequence of tracial von Neumann algebras {Mn}∞n=−1, where

Mn−1 ⊂ Mn is a trace-preserving inclusion for all n ≥ 0, is a pre-Jones tower of

N ⊂M if the following is satisfied for all n ≥ 1:

Mn+1 is the basic construction of Mn−1 ⊂Mn.

That is,Mn+1 = ⟨Mn, eMn−1⟩, where eMn−1 is the Jones projection of L2(Mn) onto

L2(Mn−1).

To simplify notation, we write en := eMn−2 for n ≥ 1. This choice of indexing

is convenient as it means en ∈Mn.

We are interested in towers where the Jones projections have some compati-

bility with the trace.

Definition 2.3.2. Suppose A ⊂ B ⊂ C is a triplet of tracial von Neumann

algebras with a distinguished projection e ∈ C. It is said to have the Markov

property with Markov modulus τ > 0 if the following holds.

trC(ex) = τ trB(x) for all x ∈ B. (2.10)

Definition 2.3.3. A pre-Jones tower {Mn}n≥−1 is said to be a Jones tower with

Markov modulus τ if every triplet Mn−1 ⊂ Mn ⊂ Mn+1, with distinguished

projection en+1, has the Markov property with modulus τ .

We are really only interested in those tracial inclusions N ⊂ M for which

a unique3 Jones tower exists. For such inclusions, the Jones tower is a canoni-

cal construction – in fact, a faithful construction, as N ⊂ M can be recovered

from the tower by discarding all but the lowest two levels. Therefore, instead of

studying N ⊂M , we can study its Jones tower, a far richer object.

For example, Jones [Jon83] proved that a unique tower exists when N ⊂ M

is a II1 subfactor with [M : N ] < ∞. This is essential to the proof of the Jones

index theorem. A Jones tower contains a family of projections {en}n≥1; we will

3Since the trace is part of the data of N ⊂ M , this means ‘unique up to choice of trace.’

However, when N ⊂M is a II1 factor, the trace is unique.
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show that the structure of this sequence forces the index to take one of the values

specified in the index theorem (Theorem 2.1.1).

Hence, it is imperative to establish a general condition for a tracial inclusion

N ⊂M to possess a unique Jones tower. We introduce a helpful notion:

Definition 2.3.4. Suppose N ⊂ M is a tracial inclusion. Let M1 = ⟨M, eN⟩ be
its basic construction. A positive faithful normal normalised trace tr : M1 → C
is a τ -Markov-extended trace if

1. (Extension condition) M ⊂M1 is a trace-preserving inclusion.

2. (Markov condition) N ⊂ M ⊂eN M1 satisfies the Markov property with

modulus τ .

If M1 has a τ -Markov-extended trace trM1 , then, as M ⊂ M1 is a tracial

inclusion, we can perform the basic construction on M ⊂ M1 to obtain M2. If

M2 also has a τ -Markov-extended trace, then we can construct M3, and so on.

However, eventually some Mn may fail to have a τ -Markov-extended trace, and

the procedure must terminate. Ideally, we’d be able to check if N ⊂ M has a

Jones tower without manually constructing any Mn.

We’d like to define a property, say P , such that N ⊂ M has a Jones tower

whenever it satisfies P . How can P control Mn by only controlling N ⊂M? The

solution is to define P so that it is preserved under the basic construction, and

hence propagates up the tower. We thus introduce the notion of a tower-building

property.

(There is no hope to define P that works for an arbitrary N ⊂M , so we build

in an assumption that P applies only to a subfamily4 of tracial inclusions.)

Definition 2.3.5. Suppose C is a family of tracial inclusions. Suppose T is a

nonnegative real-valued function on C, where we write TN⊂M to denote its value

on N ⊂ M . Suppose P is a property that is true or false for any member of C.
We say P is T -tower-building if, whenever N ⊂ M belongs to C and has P , the

following hold:

1. (Markov-extension condition) There exists a TN⊂M -Markov-extended trace

tr :M1 → C.

2. (ion condition) M ⊂M1 belongs to C, has P , and TM⊂M1 = TN⊂N .

4For example, the family of all II1 subfactors.
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If N ⊂ M satisfies P , then M ⊂ M1 is a tracial inclusion with P , so we

can construct M2. Then M1 ⊂ M2 is itself a tracial inclusion with P , so we can

continue indefinitely. We obtain a Jones tower for N ⊂M , with modulus TN⊂M .

This isn’t enough for our purposes; we want to ensure that N ⊂ M has a

unique Jones tower. For that, we need to place additional assumptions on P .

Definition 2.3.6. Suppose C, T are as above, and suppose P is a T -tower-

building property. We say P is recoverably T -tower-building if

N ⊂M has P ⇐⇒ There exists a TN⊂M -Markov-extended

trace tr :M1 → C.

We say P is uniquely T -tower-building if

N ⊂M has P =⇒ There exists a unique TN⊂M -Markov-extended

trace tr :M1 → C.

We say P is a good T -tower-building property if it is both recoverably and

uniquely tower-building.

We claim that the presence of a good tower-building property guarantees the

existence and uniqueness of the Jones tower. In fact, we can say more.

Theorem 2.3.7. (Tower-building theorem)

Suppose C is a family of tracial inclusions and P is a good T -tower-building

property on C. Suppose N ⊂M belongs to C. Then,

N ⊂M has P ⇐⇒ N has a unique Jones tower {Mn}n≥−1

and its modulus is TN⊂M .

This theorem generalises results found in [JS97, pp36-45] and [GHJ89, pp80-

86].

Proof. As we have introduced the ‘right’ definitions, the proof is just a matter of

unravelling them. We abbreviate TN⊂M to τ .

In the discussion following Definition 2.3.5, we explained that, if N ⊂M has

P , then it has a Jones tower {Mn}n≥−1 of modulus τ . Note that we get an extra

fact for free: the self-replication condition of Definition 2.3.5 implies that every

inclusion Mn−1 ⊂Mn belongs to C and has P .
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The remainder of the proof has two parts. In part 1, we prove the converse

of the above: if N ⊂M has a Jones tower of modulus τ , then N ⊂M has P . In

part 2, we show that the tower {Mn}n≥−1 is unique.

Part 1: Suppose N ⊂ M has a Jones tower {Mn}n≥−1 of modulus τ . By

Definition 2.3.1 and Definition 2.3.3, this implies in particular that M1 has a

trace trM1 , M ⊂M1 is a trace-preserving inclusion, and N ⊂M ⊂eN M1 has the

Markov property with modulus τ . By Definition 2.3.4, this precisely means that

trM1 is a τ -Markov-extended trace. Because P is recoverable, Definition 2.3.6

implies N ⊂M has P .

Part 2: Suppose N ⊂M has P . We already know it has a Jones tower {Mn}
of modulus τ from part 1. Now suppose {M̃n}n≥−1 is another Jones tower for

N ⊂ M , with any modulus. We will show that it is identical to {Mn}, i.e. the

traces agree and the algebras agree.

Abbreviate the trace on Mn (respectively M̃n) to trn (respectively t̃rn). We

induct on n. The (−1)st and 0th level of both towers are N ⊂M , so (M̃i, t̃ri) =

(Mi, tri) for i = −1, 0. For n ≥ 0, assume (M̃m, t̃rm) = (Mm, trm) for m ≤ n.

That is, the two Jones towers agree up to level n and possibly diverge after that.

We illustrate this in Figure 2.1, where hooked arrows are tracial inclusions.

...
...

(Mn+1, trn+1) (M̃n+1, t̃rn+1)

(Mn, trn)

(Mn−1, trn−1)

...

Figure 2.1: Jones towers diverging at level n+ 1.

By part of the definition of a Jones tower (Definition 2.3.1), Mn+1 and M̃n+1

must both be the basic construction of (Mn−1 ⊂Mn, trn), so they’re equal.

By another part of the definition (Definition 2.3.3),Mn−1 ⊂Mn ⊂en+1⊂Mn+1

has the Markov property with modulus τ . This must be true both when Mn+1

is equipped with trn+1 and when it is equipped with t̃rn+1. By Definition 2.3.4,

this means both traces are τ -Markov-extended.



36 CHAPTER 2. THE BASIC CONSTRUCTION AND INDEX THEOREM

However, at the start of the proof, we proved Mn−1 ⊂ Mn has P . As P is

uniquely tower-building, trn+1 = t̃rn+1. By induction, {Mn} is unique.

Essentially, the tower-building theorem is the most general condition for ex-

istence and uniqueness of Jones towers. However, on its own, it can’t be practi-

cally used to check if a given N ⊂ M has a unique Jones tower. Rather, it is a

‘meta-theorem’ – a fundamental recipe for existence-uniqueness conditions. The

theorem tells us that, if C admits a good tower-building property P , then we can

use P to find members of C with unique Jones towers.

To prove the Jones index theorem, we need to be able to build Jones towers

for members of two families C, for two quite different purposes. The first is

of course the family of II1 subfactors, and the second is the family of finite-

dimensional tracial inclusions5. We will use the fundamental recipe to identify

existence-uniqueness conditions for Jones towers in both families.

2.4 Jones tower of a II1 subfactor

The results in this section were proven by Jones [Jon83, pp8-9].

Jones towers are immensely valuable to II1 subfactor theory, as they unfold

the structure of a subfactor N ⊂M to a far more expansive algebraic object.

Theorem 2.4.1. Suppose N ⊂M is a II1 subfactor. Then [M : N ] <∞ if and

only if N ⊂M has a unique Jones tower {Mn}∞n=−1.

This theorem means that a finite-index subfactor and its Jones tower uniquely

determine one another, but the tower contains far more visible data.

We prove this using the fundamental recipe. Let C be the collection of all

II1 subfactors. Let T : C → [0,∞) evalute to [M : N ]−1 on N ⊂ M . Say

N ⊂ M has the ‘finite index property’ if [M : N ] < ∞, and call this P . If we

can prove P is a good tower-building property, then applying the tower-building

theorem (Theorem 2.3.7) allows us to conclude Theorem 2.4.1 immediately. (The

conclusion occurs after Proposition 2.4.5.)

We first prove P is tower-building, then prove goodness afterwards. By Def-

inition 2.3.5, we need to verify the Markov-extension condition and the self-

replication condition. We first verify the latter, i.e. that N ⊂ M having P
implies M ⊂M1 belongs to C, has P , and has the same value of T .

5N ⊂M where N,M are tracial and finite-dimensional.
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Proposition 2.4.2. If N ⊂M is a II1 subfactor with finite index [M : N ] <∞,

then M ⊂M1 is a II1 subfactor with the same index.

Proof. First, we prove that M ⊂ M1 is a II1 subfactor. It suffices to prove that

M1 is a II1 factor, as inclusions of II1 factors are automatically trace-preserving

due to the uniqueness of the trace (Theorem 1.7.2).

From Proposition 2.2.16, M1 and N have (antilinearly) isomorphic centres.

As N is a factor, so is M1. As [M : N ] < ∞, N ′ is finite by Proposition

1.8.3. From Proposition 2.2.15, M1 is (antilinearly) isomorphic to N ′, so it is

itself finite. M1 contains the infinite-dimensional subalgebra M , and so is itself

infinite-dimensional. By the classification of factors, M1 is a II1 factor.

It remains to show [M1 : M ] = [M : N ]. By Proposition 2.2.15, the inclusion

M ⊂ M1 is antilinearly isomorphic to N ′ ⊂ M ′. Hence, [M1 : M ] = [N ′ : M ′].

By Proposition 1.8.3(5), [N ′ :M ′] = [M : N ].

This proves the self-replication condition. In particular, if N ⊂ M has P ,

then M1 is equipped with a trace trM1 :M1 → C by virtue of being a II1 factor.

To finish verifying that P is tower-building, we need to show that trM1 is Markov-

extended (Definition 2.3.4). We already have that M ⊂ M1 is trace-preserving,

as all II1 subfactors are. It remains to prove the Markov condition:

Proposition 2.4.3. If N ⊂M has finite index, then N ⊂M ⊂eN M1 is Markov

with modulus [M : N ]−1.

The proof of Proposition 2.4.3 relies on the following formula.

Proposition 2.4.4. [Jon83, 3.1.7.]

trM1(eN) = [M : N ]−1.

Proof. From Proposition 1.7.8,

dimeNM1eN

(
eNL

2(M)
)
= trM1(eN)

−1 dimM1 L
2(M) (2.11)

First evaluate the left. Recall x 7→ xeN is an isomorphism of N onto eNM1eN by

Proposition 2.2.12. As eN |L2(N) is the identity, this is a spatial isomorphism from

the representation of N on L2(N) to eNM1eN on L2(N). Hence,

dimeNM1eN

(
eNL

2(M)
)
= dimN L

2(N) = 1. (2.12)

To evaluate the right side of (2.11), we note

dimM1 L
2(M) = (dimM ′

1
(L2(M)))−1 = (dimN L

2(M))−1 = [M : N ]−1. (2.13)
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The first equality holds by Proposition 1.7.8(3), and the second by Proposition

2.2.15, because Ad J is a spatial isomorphism and hence preserves coupling con-

stants. The third is the definition of the index. Substituting (2.12) and (2.13)

into (2.11) finishes the proof.

This result is remarkable! By definition, the index is given as a coupling con-

stant, which is a priori extremely difficult to compute. The simple formula above

allows us to dispense with coupling constants entirely. Without this, classifying

index values and proving the index theorem would be very technically challenging.

We obtain a proof of Proposition 2.4.3.

Proof. (Proposition 2.4.3)

We need to prove that [M : N ] <∞ implies following Markov relation:

trM1(eNx) = [M : N ]−1 trM(x) for all x ∈M . (2.14)

Define ϕ : N → C by y 7→ trM1(eNy). ϕ is cyclic because eN ∈ N ′ (Proposition

2.2.9(2)). ϕ is normal because trM1 is. Hence ϕ is a normal, possibly non-

normalised trace. By the uniqueness of the II1 trace, ϕ must equal the trace

trN up to a constant factor. Here we apply the remarkable formula obtained in

Proposition 2.4.4. ϕ(1) = trM1(eN) = [M : N ]−1 = [M : N ]−1 trN(1), so this

constant factor is [M : N ]−1. This proves (2.14) for x ∈ N .

To extend the proof of (2.14) to x ∈M :

trM1(eNx) = trM1(e
2
Nx) = trM1(eNxeN) = trM1(EN(x)eN)

by Proposition 2.2.9(1). As EN(x) ∈ N , (2.14) applies.

trM1(eNx) = [M : N ]−1 trN(EN(x)) = [M : N ]−1 trM(x)

as EN is trace-preserving. This proves (2.14) for all x ∈M .

Proposition 2.4.3 verifies that trM1 is a Markov-extended trace, which proves

that P is tower-building. The final step is to show P is good.

Proposition 2.4.5. P is a good [M : N ]−1-tower-building property.

Proof. By Definition 2.3.6, we need to show P is uniquely and recoverably tower-

building. M1 is a II1 factor, so it has a unique positive faithful normal normalised

trace. Hence it’s trivially true that P is uniquely tower-building.

We prove P is recoverable by contradiction. Suppose M1 is tracial, with a

[M : N ]−1-Markov-extended trace trM1 , but N ⊂ M does not have P . That is,
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[M : N ] = ∞. By Proposition 1.8.3(2), this means N ′ is infinite. But N ′ is

antilinearly isomorphic to M1 (Proposition 2.9). A tracial von Neumann algebra

is finite6, so we get a contradiction.

Having identified a good tower-building property, the tower-building theorem

(Theorem 2.3.7) implies Theorem 2.4.1. We hence obtain a unique Jones tower

for every finite index subfactor N ⊂M . Actually, we obtain a little more for free.

Owing to Proposition 2.4.2, we have the following.

Theorem 2.4.6. Suppose N ⊂ M is a II1 subfactor with [M : N ] < ∞. Then

N ⊂M has a unique Jones tower {Mn}n≥−1, and its modulus is [M : N ]−1.

Moreover, for each n ≥ −1, Mn is a II1 factor and [Mn+1 :Mn] = [M : N ].

The Jones tower is hence a natural method of making ‘more of the same’.

Owing to the uniqueness of the Jones tower, we often think of a finite-index

subfactor and its Jones tower as being the same object. In particular, the Jones

tower reveals a simpler interpretation of the index – it encodes the Markov mod-

ulus of the tower, and no other data, and so is the ‘simplest possible’ invariant

of a II1 subfactor. Hence, restricting the allowable values of the index reduces to

restricting the Markov modulus, which we do in Section 2.9.

2.5 Jones tower of a finite-dimensional inclusion

This section synthesises the original work of Jones [Jon83] with results that appear

later, e.g. [JS97, pp36-45], [GHJ89, pp80-86].

We now consider the Jones towers of finite-dimensional tracial inclusions A ⊂
B. Recall that, when we write ‘A ⊂ B is a tracial inclusion’, there is implicitly

a choice of trace trB on B, which is considered part of its data. Unlike the II1

trace, this is a non-unique choice in general.

The reason we are interested in these Jones towers is quite different to the

previous section. The point of building a Jones tower is not to understand A ⊂ B,

as we already fully understand finite-dimensional inclusions. Rather, building

towers is the point, as it’s an easy way to build infinitely many objects from a

finite-dimensional object. The main theorem of this section is the following:

6See proof of Proposition 2.2.13.
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Theorem 2.5.1. Suppose G is a nonempty connected bipartite graph. Then there

exists a finite-dimensional tracial inclusion A ⊂ B with Jones tower {Bn}∞n=−1

of Markov modulus ∥G∥−2, where ∥G∥ is the graph norm7 of G.

This means that we can tailor-make infinite towers of finite-dimensional al-

gebras using only the data of a graph! Towards a proof, we need to express

another existence-uniqueness condition for the Jones tower – this time, for finite-

dimensional A ⊂ B instead of subfactors N ⊂M . Since the algebras in question

are finite-dimensional, we can express such a condition with algebro-combinatorial

objects. We use two kinds of objects: inclusion matrices, and trace vectors. We

define the latter in Definition 2.5.4.

When we introduced the inclusion matrix, we had not yet introduced the

basic construction, so we explain how they interact. Fix a finite-dimensional

tracial inclusion A ⊂ B. If B1 is its basic construction, what is the inclusion

matrix of B ⊂ B1?

Recall from Definition 1.5.8 that the row indices of ΛB1
B are the minimal central

projections (MCPs) of B, and the column indices are MCPs of B1. Continuing

the theme that B1 ‘reflects’ A, the MCPs of B1 are determined by A.

Lemma 2.5.2. Suppose P is the set of MCPs of A. Then P̃ := {p̃ : p ∈ P} is

the set of MCPs of B1, where p̃ ∈ Z(B) is unique for the identity peA = p̃eA.

Proof. Immediate from Proposition 2.2.16.

Then, for indexing purposes, P̃ (column indices of ΛB1
B ) can be identified with

P (row indices of ΛB
A). Then the matrices ΛB1

B and
(
ΛB

A

)T
share row (and column)

indices. Indeed, they are equal.

Lemma 2.5.3. ΛB1
B =

(
ΛB

A

)T
.

Proof. By Proposition 1.5.13, ΛA′

B′ = (ΛB
A)

T . By Proposition 2.2.15, the inclusion

B′ ⊂ A′ is isomorphic to the inclusion B ⊂ B1, so ΛA′

B′ = ΛB1
B .

If A ⊂ B is viewed as a ‘plain’ inclusion of finite-dimensional von Neumann

algebras, it is completely described by the pair (ΛB
A, n⃗

A). However, we are viewing

A ⊂ B as a tracial inclusion, so we must also encode the trace data.

Let C be an arbitrary finite-dimensional von Neumann algebra, Q be its set of

MCPs, and n⃗C ∈ NQ be its dimension vector. By Theorem 1.5.5, C =
⊕

q∈QCq,

where Cq ∼= MnC
q
(C). Observe the restriction of tr to Cq is also a trace, and

7Defined to be the norm of its adjacency matrix.
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so must be proportional to the usual matrix trace Tr, where Tr(q) = nq and

Tr(r) = 1 for any minimal projection r ∈ Cq. Therefore, tr is a linear combination

of matrix traces on each simple summand of C.

tr

(⊕
q∈Q

xq

)
:=
∑
q∈Q

τq Tr(xq) (2.15)

Hence any trace on C is uniquely determined by a vector.

Definition 2.5.4. If C is a finite-dimensional von Neumann algebra and Q is its

set of MCPs, the trace vector of a trace tr : C → C is given by τ⃗ = (τp)p∈Q.

To distinguish traces on different algebras, write trC for a trace on C and τ⃗C

for its trace vector. We reduce trace properties to linear-algebraic identities.

Lemma 2.5.5. (P.f.n. condition)

trC : C → C is a positive faithful normalised8 trace if and only if τ⃗C is a

vector of positive entries such that τ⃗C · n⃗C = 1.

Lemma 2.5.6. (Extension condition)

Suppose C ⊂ D are finite-dimensional von Neumann algebras with traces trC

and trD. Then C ⊂ D is a trace-preserving inclusion if and only if ΛD
C τ⃗

D = τ⃗C.

Lemma 2.5.5 is easy to verify using (2.15). Lemma 2.5.6 is proven using the

representation of C ⊂ D from Theorem 1.5.7; it is not short, but is elementary.

These algebro-combinatorial objects – inclusion matrices and trace vectors –

allow us to state what we claim is a tower-building property.

Definition 2.5.7. We say that a tracial inclusion of finite-dimensional von Neu-

mann algebras A ⊂ B is Frobenius9 at parameter µ > 0 if τ⃗B is an eigenvector

of (ΛB
A)

TΛB
A with eigenvalue µ.

We now state our existence-uniqueness condition.

Theorem 2.5.8. Suppose A ⊂ B is a tracial inclusion of finite-dimensional von

Neumann algebras and τ > 0. Then,

A ⊂ B is Frobenius at τ−1 ⇐⇒ A ⊂ B has a unique Jones tower

and its modulus is τ .
8‘Normal’ can be omitted as it is redundant: any functional on a finite-dimensional von

Neumann algebra is ultraweakly continuous.
9We choose this name as the Perron-Frobenius theorem (Theorem 2.5.10) provides examples

of such eigenvectors.
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Once again, we follow the fundamental recipe to prove this. Write C for the

family of finite-dimensional tracial inclusions. Fix T to be a constant τ > 0. Write

P to mean the Frobenius property with τ−1. By the tower-building theorem,

proving Theorem 2.5.8 reduces to proving P is a good τ -tower-building property.

Proposition 2.5.9. P is a good τ -tower-building property for C.

Individual parts of Theorem 2.5.8 are known in the literature, but not cen-

tralised. Existence was known to Jones [Jon83]. Uniqueness and/or exhaustive-

ness (i.e. that all A ⊂ B with unique Jones tower are Frobenius) are found

piecemeal in [Pop90, 2.3], [JS97, 3.2.5], etc., but proofs are missing or sparse.

Hence we give a full proof of Proposition 2.5.9 (and hence Theorem 2.5.8).

Proof. We must show P is recoverably and uniquely tower-building. In fact, the

‘unique’ modifier will come for free, so we begin by proving P is recoverable.

By Definition 2.3.6, a recoverably tower-building property satisfies the self-

replication condition and is equivalent to the Markov-extension condition. (These

conditions are defined in Definition 2.3.5.) Therefore, we split the proof that P
is recoverable into two parts.

Part 1: Our goal is to prove P is equivalent to the Markov-extension condition.

By unfolding definitions, this is equivalent to:

A ⊂ B has P ⇐⇒ B1 has a τ -Markov-extended trace.

⇐⇒ B1 has a p.f.n. trace such that trB1 |B = trB (2.16)

and A ⊂ B ⊂eA⊂ B1 is Markov with modulus τ

where ‘p.f.n.’ means ‘positive faithful normalised.’ We can simplify this goal

using a fact whose proof we defer to the end.

τ⃗B1 = τ τ⃗A ⇐⇒ A ⊂ B ⊂eA⊂ B1 is Markov with modulus τ . (2.17)

Assuming this holds, (2.16) reduces to

A ⊂ B has P ⇐⇒ B1 has a p.f.n. trace with trace vector τ⃗B1 = τ τ⃗A (2.18)

and trB1 |B = trB.

Therefore, the goal of Part 1 amounts to proving (2.18).

=⇒ : Define τ⃗B1 := τ τ⃗A. It suffices to verify that the p.f.n. condition (Lemma

2.5.5) and extension condition (Lemma 2.5.6) hold. To verify the extension con-

dition, note

ΛB1
B τ⃗B1 = (ΛB

A)
T τ⃗B1 = τ(ΛB

A)
T τ⃗A
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by Lemma 2.5.3. As A ⊂ B is a trace-preserving inclusion by assumption, it

satisfies the extension condition, so ΛB
A τ⃗

B = τ⃗A. Hence,

ΛB1
B τ⃗B1 = τ(ΛB

A)
TΛB

A τ⃗
B = τ⃗B (2.19)

This verifies the extension condition on B ⊂ B1.

It remains to verify the p.f.n. condition. A is tracial by assumption – by

definition this means its trace trA is p.f.n. By the p.f.n. condition τ⃗A has positive

entries, and so the same is true of τ⃗B1 = τ τ⃗A. Moreover,

n⃗B1 · τ⃗B1 = (n⃗AΛB
AΛ

B1
B ) · τ⃗B1 = n⃗A · (ΛB

AΛ
B1
B τ⃗B1) = n⃗A · τ⃗A = 1.

The first equality comes from applying Lemma 1.5.11 twice. The third equality

is an application of (2.19) and the identity τ⃗B1 = τ τ⃗A. The final equality is due

to the p.f.n. condition. Hence, n⃗B1 · τ⃗B1 = 1, and n⃗B1 has positive entries, so

(B1, trB1) satisfies the p.f.n. condition. This proves one direction of (2.18).

⇐= : Assume B1 has a p.f.n. trace with τ⃗B1 = τ τ⃗A and trB1 |B = trB. The

latter identity implies B ⊂ B1 satisfies the extension condition. Then,

τ⃗B1 = τ τ⃗A

=⇒ τ⃗B1 = τΛB
A τ⃗

B (Extension condition on A ⊂ B)

=⇒ ΛB1
B τ⃗B1 = τ(ΛB

A)
TΛB

A τ⃗
B (Lemma 2.5.3)

=⇒ τ−1τ⃗B = (ΛB
A)

TΛB
A τ⃗

B (Extension condition on B ⊂ B1).

The last equality is precisely what it means for A ⊂ B to be Frobenius with

parameter τ−1, i.e. to have P . This proves (2.18). To finish Part 1 of this proof,

it remains to prove the fact whose proof we deferred, (2.17).

The Markov relation is trB1(xeA) = τ trB(x) for all x ∈ B. By Proposition

2.2.9, trB1(xeA) = trB1(eAxeA) = trB1(EA(x)eA). As imEA = A, it follows that

trB1(xeA) = τ trA(x) ∀ x ∈ B ⇐⇒ trB1(xeA) = τ trA(x) ∀ x ∈ A.

Note that a trace is determined by the values it takes on minimal projections10

(this is obvious inMn(C), for example). As x 7→ xeA is an isomorphism of A onto

eAB1eA (Proposition 2.2.12), it preserves minimal projections. Then the minimal

projections of eAB1eA are {reA : r is minimal in A.}. It follows that

trB1(xeA) = τ trA(x) ∀ x ∈ B ⇐⇒ trB1(reA) = τ trA(r) for minimal r ∈ A.

⇐⇒ τ⃗B1 = τ τ⃗A

10Not to be confused with minimal central projections. E.g. M3(C) has one minimal central

projection (the identity) and many minimal (rank-one) projections.
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where the last equivalence can be seen by inspecting Definition 2.5.4 and the

remarks preceding it. This proves (2.17), as required, concluding Part 1.

Part 2: The goal of Part 2 is to prove P satisfies the self-replication condition

(as defined in Definition 2.3.5). Suppose A ⊂ B has P .

It is clear that B1 is finite-dimensional11. Then B ⊂ B1 is automatically in C
(the family of finite-dimensional tracial inclusions).

The nontrivial part is showing B ⊂ B1 also has P . We have already proven

that, if A ⊂ B has P , then trB1 |B = trB and τ⃗B1 = τ τ⃗A (see (2.16) and (2.17)).

It follows that

(ΛB1
B )TΛB1

B τ⃗B1 = ΛB
AΛ

B1
B τ⃗B1 = ΛB

A τ⃗
B = τ⃗A = τ−1τ⃗B1 .

where the second and third equalities are two applications of the extension condi-

tion. This equality is precisely what it means for B ⊂ B1 to have P , by Definition

2.5.7. This concludes Part 2; combined with Part 1, it implies P is recoverably

τ -tower-building.

By (2.17), τ⃗B1 := τ τ⃗A is the only choice of trace vector for B1 such that

A ⊂ B ⊂eA B1 is Markov with modulus τ . Hence, by definition, P is also uniquely

τ -tower-building. We conclude P is a good τ -tower-building property.

Applying the tower-building theorem (Theorem 2.3.7) then yields a proof

of Theorem 2.5.8. We hence have an existence-uniqueness condition for Jones

towers of finite-dimensional inclusions. That is, whenever A ⊂ B is Frobenius,

we automatically obtain a unique Jones tower of finite-dimensional algebras. This

condition is especially powerful because the Frobenius property is purely linear-

algebraic. We apply a powerful result from linear algebra, the Perron-Frobenius

theorem, to construct Jones towers with ease.

Theorem 2.5.10. (Perron-Frobenius)

Suppose Ξ is the adjacency matrix of a nonempty connected graph. Then Ξ has

a unique (up to positive scalar multiplication) eigenvector τ⃗ with positive entries.

The eigenvalue of τ⃗ is ∥Ξ∥.
See [Gan59, p53],[GHJ89, pp13-14]. We now prove Theorem 2.5.1, restated

here:

Theorem 2.5.11. Suppose G is a nonempty connected bipartite graph. Then

there exists a finite-dimensional tracial inclusion A ⊂ B such that its Jones

tower {Bn}∞n=−1 has Markov modulus ∥G∥−2.
11Because it is a subalgebra of L2(B), which is finite-dimensional due to the finite-

dimensionality of B.
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Proof. SupposeG has left vertices P and right verticesQ, where |P | = n, |Q| = m.

Let Λ be the (n×m) biadjacency matrix of G. Let A = C⊕n, so it has dimension

vector n⃗A = (1, . . . , 1)︸ ︷︷ ︸
n entries

, and let B be defined by the dimension vector n⃗B = n⃗AΛ.

This is consistent with the constraints of Lemma 1.5.11, and it is easy to construct

an inclusion map ι : A → B such that the Bratteli diagram of A ⊂ B is G, and

hence their inclusion matrix is Λ.

To apply the existence-uniqueness condition and show A ⊂ B has a Jones

tower, we will equip B with a p.f.n. trace, then show that A ⊂ B is Frobenius.

Define a graph H on Q by drawing an edge between each pair q, q′ ∈ Q for

each path of length 2 between q and q′ in G. Then the adjacency matrix of H is

ΛTΛ. It’s clear H is connected whenever G is. Hence, by Theorem 2.5.10, ΛTΛ

has a Perron-Frobenius eigenvector τ⃗ with eigenvalue ∥H∥ = ∥Λ∥2 = ∥G∥2.
Let τ⃗B = τ⃗ and assume it is scaled so that n⃗B · τ⃗B = 1. As τ⃗B has positive

entries, it then follows from the p.f.n. condition (Lemma 2.5.5) that it defines a

p.f.n. trace trB. This equips A ⊂ B with the structure of a tracial inclusion. As

τ⃗B is an eigenvector of Λ with positive eigenvalue ∥G∥2, it follows that A ⊂ B

is Frobenius at ∥G∥2. By Theorem 2.5.8, we conclude A ⊂ B has a Jones tower

with modulus ∥G∥−2.

Consider an example: the linear graph on n − 1 vertices, also known as the

Coxeter diagram An−1, satisfies ∥An−1∥2 = 4 cos2(π/n) [GHJ89, 1.4.3]. The cases

where n = 1, 2 are degenerate, but when n ≥ 3, Theorem 2.5.11 shows that we

can build a Jones tower with modulus τ = 1/ (4 cos2(π/n)) for n ≥ 3.

We will see in Section 2.8 that a Jones tower with Markov modulus τ contains

a II1 subfactor with index τ−1. Hence, the An Coxeter diagrams are responsible

for the subfactors with index in the discrete series of Theorem 2.1.1!

2.6 Relations in the Jones tower

This concludes our study of the existence and uniqueness theory of Jones towers.

In particular, we’ve shown that ‘almost all’ II1 subfactors have unique Jones

towers; only infinite-index subfactors do not. This is why the Jones tower is

integral to all modern II1 subfactor theory; it unpacks extra structure from a

subfactor, without costing extra data.

In particular, it is invaluable for proving the index theorem. In anticipation

of the proof, we introduce key algebraic properties of the Jones tower. The
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chief property is that the sequence {e1, e2, . . .} satisfies Jones relations. Much of

the Jones tower’s algebraic structure is owed to these relations – i.e., many of

its properties are enjoyed by any family of projections with the same relations.

Hence, all we do in Section 2.6 is identify the relations. In Section 2.7, we abstract

away from the Jones tower and study the relations in a vacuum.

Remark 2.6.1. We often write N ⊂M ⊂M1 ⊂M2 ⊂ . . . to describe the Jones

tower. Indeed, one can build a tracial von Neumann algebra M∞ that contains

Mn for all n ≥ −1. This is done using a more general case of the GNS construction

than the one we presented in Section 1.6. One uses the construction to represent⋃∞
n=−1Mn on a Hilbert space, then defines M∞ to be its weak closure. Hence we

view the entire Jones tower as living in M∞.

Fix a tracial inclusionN ⊂M . Assume it has a unique Jones tower {Mn}∞n=−1,

and its Markov modulus is τ . Recall, by Definition 2.3.1, Mn−2 ⊂ Mn−1 ⊂en Mn

is a basic construction triplet for all n ≥ 1. Hence all results from Section 2.2

apply by replacing N,M, ⟨M, eN⟩ with Mn−2,Mn−1,Mn, and eN with en
12. First,

we need a formula for conditional expectations in the tower.

Proposition 2.6.2. For all x, y ∈Mn−1, EMn−1(xeny) = τxy.

Proof. By Proposition 2.2.7, EMn−1(xeny) is the unique element of Mn−1 satisfy-

ing trMn ((xeny)z) = trMn−1

(
EMn−1(xeny)z

)
for all z ∈Mn−1. We compute:

trMn ((xeny)z) = trMn (enyzx) = τ trMn−1 (yzx) = trMn−1 (τxyz)

where the second equality is due to the Markov property ofMn−2 ⊂Mn−1 ⊂en Mn

(Definition 2.3.2). This holds for all z ∈Mn−1, proving EMn−1(xeny) = τxy.

Corollary 2.6.3. EMn−1(en) = τ .

This is enough to identify the Jones relations.

Theorem 2.6.4. [Jon83, 3.4.2,3.1.7]

For all n ≥ 1, the following relations hold13 in M∞.

1. e2n = 1.

2. enen+1en = τen and en+1enen+1 = τen+1.

12Recall en is just notation for the Jones projection eMn−2
: L2(Mn−1) → L2(Mn−2).

13As there is no Jones projection e0, relation 2 is understood to hold only if it makes sense.
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3. enem = emen if |n−m| > 1.

Proof. Relation 1 is immediate as en is a projection. For relation 2, we compute

en+1enen+1 = EMn−1(en)en+1 = τen+1

where the first equality is by Proposition 2.2.9(1) and the second by Corollary

2.6.3. The second part of relation 2 is slightly more involved, but similar [Jon83,

3.4.1(ii)]. For relation 3, suppose n < m. Then n ≤ m− 2, so en ∈Mn ⊂Mm−2.

Proposition 2.2.9(2) states that elements of Mm−2 commute with em.

Most of the structure of Jones towers stems directly from these relations, so

we abstract away from the tower, and study the relations directly.

2.7 The Jones relations

We model a definition on the result of Theorem 2.6.4.

Definition 2.7.1. A family of projections {εi}∞i=1 in a tracial von Neumann

algebra M is said to satisfy the Jones relations with Markov modulus τ if it

satisfies the following for i, j ≥ 1:

1. ε2i = 1,

2. εiεi±1εi = τεi,

3. εiεj = εiεj if |i− j| > 1,

in addition to the Markov property:

4. tr(xεi) = τ tr(x) if x ∈ [1 : i− 1] (notation defined below).

We write [n : m] = ⟨1, εn, . . . , εm⟩alg for the ∗-subalgebra of M generated by

1, εn, . . . , εm, where n ≤ m ∈ N ∪ {∞}. If we need to refer to relations 1-3

separately from relation 4, we call them the algebraic Jones relations.

Remark 2.7.2. (The interval notation)

1. If n > m, let [n : m] denote the trivial von Neumann algebra C1.

2. By the third Jones relation, [n : m] and [k : l] mutually commute if k ≥
m+ 2.



48 CHAPTER 2. THE BASIC CONSTRUCTION AND INDEX THEOREM

Retroactively, Theorem 2.6.4 is re-stated as follows:

Theorem 2.7.3. If {Mn}∞n=−1 is a Jones tower of modulus τ , then the family

{ei}∞i=1 ⊂M∞ satisfies the Jones relations with modulus τ .

In particular, by Theorem 2.4.6, if {Mn} is the unique Jones tower of a finite

index subfactor, then {ei}∞i=1 satisfies the Jones relations with modulus [M : N ]−1.

However, these relations enjoy a wealth of inherent structure, whether they

appear in a Jones tower or not. Their study is called the theory of Temperley-Lieb

algebras, after Neville Temperley and Elliott Lieb, who independently studied the

relations for their applications to statistical mechanics [TL71].

In this section, we fix arbitrary M and {εi}∞i=1 satisfying the Jones relations

with modulus τ . We stress the difference between εi and the ei. By definition,

ei is an element of the ith level (Mi) of some Jones tower; it has an explicit

definition as some projection. Theorem 2.7.3 means that they satisfy the Jones

relations. In contrast, we assume that the εi satisfy the Jones relations and there

are no other constraints placed on them. The point is to abstractly study the

Jones relations without extraneous structure.

This leap of abstraction provides a better perspective for proving the Jones

index theorem. To prove that the index of a subfactor must take a value in

{4 cos2(π/n) : n ≥ 3} ∪ [4,∞), which is a subfactor-theoretic fact, we will prove

that τ−1 ∈ {4 cos2(π/n) : n . . .} ∪ [4,∞), which is a fact about the Jones re-

lations. Conversely, to construct a subfactor with index having every value in

{4 cos2(π/n) : n ≥ 3} ∪ [4,∞), we will build a subfactor out of {εi}∞i=1.

Hence, we present a lengthy study of the Jones relations, as a prerequisite to

the proof of the index theorem. Our writing in Section 2.7 synthesises [Jon83]

with theory from [Wen87], [Kau90], and [Pen14].

The Temperley-Lieb algebra

To study the Jones relations, we define the universal object on the relations.

(Recall from standard algebra that ‘universal’ refers, loosely, to the most general

object for the given set of generators and relations.)

Definition 2.7.4. TL(τ), the Temperley-Lieb algebra on n generators and pa-

rameter τ is the universal ∗-algebra with identity 1 and generators {En}∞n=1 sat-

isfying E∗
i = Ei in addition to the Temperley-Lieb relations :

1. E2
i = τ−1/2Ei.
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2. EiEi±1Ei = Ei.

3. EiEj = EjEi if |i− j| > 1.

Let TLn:m(τ) := ⟨1, En, . . . , Em⟩alg and abbreviate TL1:m(τ) to TLm(τ).

We will typically write TL in place of TL(τ). Note that the Temperley-Lieb

relations are related to the algebraic Jones relations by a scaling: it is easy to check

that the family {τ−1/2ei}∞i=1 satisfies the Temperley-Lieb relations. Therefore, by

universality, this family generates a representation14 of TL.

Proposition 2.7.5. There exists a unique surjective unital ∗-homomorphism φ :

TL(τ) → [1 : ∞] that maps Ei 7→ τ−1/2εi.

The advantage of this representation is not immediately clear. For instance,

TL(τ) lacks the analytical structure of M, e.g. its topology and trace.

The true advantage is the remarkable fact that TL is isomorphic to an algebra

of diagrams. We define a graphical Temperley-Lieb algebra as follows. As a vector

space, define TLgr
n (τ) as the free C-vector space generated by planar isotopy

classes of rectangular diagrams such as the following:

.

. . .

.

.

. .

Figure 2.2: A diagram in TLgr
3 .

Each diagram has n + 1 mobile strands with fixed endpoints on a fixed rect-

angle. (We omit or include the blue rectangle as necessary for illustration.) Di-

agrams may contain unfixed loops, but a loop is given a scalar value of τ−1/2.

(A diagram with a loop is τ−1/2 times the same diagram with a loop removed.)

Consider diagrams identical if they’re isotopic by pulling strands without crossing.

If U, V are diagrams, define UV as the diagram formed by stacking U on top

of V . The identity element is the diagram with n + 1 vertical strands. If U

is a diagram, then U∗ is its reflection across a horizontal axis. The conjugate-

linear extension of ∗ to TLgr
n (τ) → TLgr

n (τ) is a ∗-operation. This makes TLgr
n (τ)

a unital ∗-algebra called the graphical Temperley-Lieb algebra on n generators.

The generators in question are the following:

Definition 2.7.6. For i = 1, . . . , n, define Egr
i ∈ TLgr

n (τ) as the following diagram

on (n+ 1) strands:

14Here we are using ‘representation’ to mean a representation of unital ∗-algebras, i.e. a

unital ∗-homomorphism.
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Egr
i :=

.

.

.

. . .

. . .

.

.

.

1 i i+ 1 n+ 1

We omit the proof that these generate TLgr
n ; see [Kau90].

Define an inclusion map from (n+1)-strand diagrams to n+2-strand diagrams

by adding a strand to the right.

U =

. .

.

.

. .

ι2(U) =

. .

.

.

. . .

.

This extends linearly to a ∗-homomorphism ιn : TLn(τ) → TLn+1(τ).

Let TLgr(τ) :=
⋃∞

n=0 TLn(τ), modulo the identification of each U ∈ TLgr
n with

ιn(U) ∈ TLgr
n+1. In fact, it is isomorphic to TL.

Theorem 2.7.7. The unital ∗-homomorphism defined by Ei 7→ Egr
i is a ∗-

isomorphism of TL(τ) onto TLgr(τ).

Proof. We give a sketch. By universality of TL(τ), the map exists if the Egr
i satisfy

the Temperley-Lieb relations (as defined in Definition 2.7.4). As the ∗-operation
is reflection about a horizontal axis, it’s clear that the Egr

i are self-adjoint. The

third relation is easy to prove. For the first two, see Figure 2.3.

(Egr
2 )2 =

.

.

. .

. .

.

.

.

..

.

. .

. .

.

.

.

.

= τ−1/2

.

.

.

.. .

. . .

.

= τ−1/2Egr
2

Egr
2 E

gr
3 E

gr
2 =

.

.

. .

. .

.

.

.

..

.

.

. . .

. . .

..

.

. .

. .

.

.

.

.

=

.

. . .

. . .

.

.

.

= Egr
2

Figure 2.3: Visual demonstration that the Egr
i satisfy Temperley-Lieb relations.

The bijectivity of the map is nontrivial; see [Jon14, pp30-32], [Kau90].

This is remarkable, and non-obvious. We can hence identify TLgr with TL,

and work with Temperley-Lieb diagrams instead of abstract algebraic elements.
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In retrospect, this makes Proposition 2.7.5 an extremely potent result. The

existence of the representation φ : TL → [1 : ∞] means that [1 : ∞] is a rep-

resentation of an algebra of diagrams, and we can reason about {εi}∞i=1 and the

Jones relations graphically, instead of algebraically! This technique was unavail-

able to Jones at the time of [Jon83]; the isomorphism TL ∼= TLgr is due to Louis

Kauffman [Kau90]. We will use graphical techniques to ‘update’ the tools Jones

used to prove the index theorem.

Before we study them further, we summarise the algebraic objects we have

introduced. [1 : ∞] is the unital ∗-subalgebra generated by {εi}∞i=1 in some

tracial von Neumann algebra M, satisfying the Jones relations. [n : m] denotes

the ∗-subalgebra generated by 1, εn, . . . , εm.

TL(τ) is the universal unital ∗-algebra on generators {Ei}∞i=1 satisfying the

Temperley-Lieb relations, which are scaled versions of the algebraic Jones rela-

tions. TLn:m(τ) denotes the ∗-subalgebra generated by 1, En, . . . , Em.

The objects are related by the representation φ : TL(τ) → [1 : ∞]. Unlike

the Ei, the εi are assumed to live in a tracial von Neumann algebra. Also, the

εi may satisfy relations which do not follow from the Jones relations, whereas all

relations satisfied by the Ei follow from Temperley-Lieb.

We will introduce graphical tools which help us study {εi}∞i=1, and eventually

prove the index theorem. However, before that, we need some algebraic results.

Algebraic relations

Suppose W,W ′ (w,w′) are arbitrary words in the symbols Ei (εi). We write

W ∼ W ′ (w ∼ w′) if they are equal under the Temperley-Lieb (algebraic Jones)

relations, up to scalar multiplication. We say that a word W is reduced if it has

minimal length in its equivalence class.

Proposition 2.7.8. Let n,m be finite. If W is a reduced word in En, . . . , Em,

then En, Em each appear at most once in W . The same result holds if the Ei are

exchanged for εi.

Proof. Assume without loss of generality that n = 1. The Temperley-Lieb rela-

tions (Definition 2.7.4) are symmetric under reversing the order of indices, so we

need only show there is at most one copy of Em.

E2
1 = E1 implies the result when m = 1. Induct on m. We’ll prove the

contrapositive, so suppose W has more than one copy of Em. By passing to

a subword, assume W = EmUEm, where U is a word in E1, . . . , Em−1. We
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assume U is reduced; by induction, U contains one or zero copies of Em−1. If

zero, then (by the third Temperley-Lieb relation) Em commutes with U and so

W ∼ E2
mU ∼ EmU , and hence W is unreduced. If one, W = EmU1Em−1U2Em,

where U1, U2 are words in E1, . . . , Em−2. As Em commutes with U1 and U2, we

have that W ∼ U1EmEm−1EmU2 ∼ U1EmU2, proving W is unreduced.

Corollary 2.7.9. [n : m] = ⟨1, εn, εn+1, . . . , εm⟩alg is finite-dimensional if n,m

are finite. Consequently, [n : m] = {εn, . . . , εm}′′.
Proof. An induction argument using Proposition 2.7.8 shows that reduced words

in εn, . . . , εm have a maximum length, proving [n : m] is finite-dimensional.

Finite-dimensional subspaces are weakly closed, so the other result follows.

This result is important, as it means that the [n : m] are finite-dimensional

von Neumann algebras. In fact, they’re tracial, as they inherit a trace from M.

We are interested in the [n : m] as we will use them to construct II1 factors by

taking m→ ∞. Hence, we will establish their tracial and algebraic properties.

First note that, if {Mn} is a Jones tower, M = M∞, and εi = ei, then

[n : m] ⊂ Mm, by Definition 2.3.1. In fact, the sequence {[n : m]}m≥n behaves

much like {Mm}m≥1. If one takes Proposition 2.2.9(1) and Corollary 2.6.3 and

does the substitutionMm → [n : m] and ei → εi, one obtains the following result:

Proposition 2.7.10. The following hold for all n,m ∈ N where the intervals are

well-defined:

1. εmxεm = E[n:m−2](x)εm if x ∈ [n : m− 1].

2. E[n:m](εm+1) = τ .

The substitution only provides intuition and is not a proof. The proof is

an easy application of the Jones relations plus Proposition 2.7.8; it is somewhat

similar to the proofs of Proposition 2.2.9(1) and Corollary 2.6.3.

To further study the εi and [n : m], we introduce two graphical tools: the

graphical trace and the trace-preserving reflection. In [Jon83], Jones developed

purely algebraic analogues of these tools. By using the graphical Temperley-Lieb

algebra, we avoid cumbersome algebraic reasoning.

The graphical trace

TL lacks some of the structure that [1 : ∞] has: in particular, it is not equipped

with a trace. However, for any n ≥ 0, the ∗-subalgebra TLn := ⟨1, E1, . . . En⟩alg
can be equipped with a trace, although it cannot extend to all of TL.
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Suppose U ∈ TLn is a diagram. Let its closure be the diagram formed by

joining each vertical pair of points as shown below, and let trgrn (U) be the scalar

value of this diagram, i.e. trgrn (U) := (τ−1/2)k, where k is the number of loops.

trgn(U) =

.

.

. ..

.

.

.

. ..

.

.

.

. ..

.

.

.

. ..

.

.

.. .

.

.. .

.

.. .

.

.. .

U

Figure 2.4: Definition of the graphical trace. (Grey shading indicates U could be

any diagram.)

In Figure 2.4, we’ve joined some pairs of points by strands to the left, and

some by strands to the right, but the choice doesn’t matter. We could draw U

on a sphere and any choice of joinings (as long as strands don’t cross) would give

isotopic diagrams. Moreover, trgrn is cyclic as, in a diagram product UV , we can

push U along the upper strands until it ends up at the bottom of the diagram.

Hence, each trgrn is well-defined, and a trace.

However, they’re not well-behaved traces. The inclusions ιn : TLn → TLn+1

are only trace-preserving up to a scalar multiple15, so the traces can’t be extended

to TL. They may also lack the properties we have assumed for tr : M → C.
They may not be faithful or positive; in fact, we will later construct explicit

counterexamples to positivity. However, they do have a Markov-type property.

Proposition 2.7.11. For all j ≥ 1, the following holds for all x ∈ TLj(δ).

trgrj+1(ιj(x)Ej+1) = trgrj (x). (2.20)

Proof. Assume x is a single diagram. Recall ιj adds a strand to the right. Then,

The right side is trgrj (x) by definition of the graphical trace.

The Markov-type property determines the graphical trace, up to scaling.

Proposition 2.7.12. Suppose {t̃rj}nj=0 is a family of traces on {TLj(τ)}nj=0

satisfying (2.20) for 0 ≤ j ≤ n. Then t̃rj = λ trgrj for 0 ≤ j ≤ n, where

λ = t̃r0(1)/ tr
gr
0 (1).

Proof. Induct on n. TL0(τ) is the algebra of single-strand diagrams and hence iso-

morphic to C1, so the result is immediate. Suppose the result holds for {t̃rj}n−1
j=0 .

Then it remains only to show t̃rn = λ trgrn .

15It is a short exercise to check that trgrn+1(ιn(x)) = τ−1/2 trgrn (x).
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ιj(x)Ej+1 =
.
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It suffices to show t̃rn(W ) = λ trgrn (W ) whenever W is a reduced word in

E1, . . . , En. By Proposition 2.7.8, we can assume W contains one copy of En (or

else we’d be finished, by induction). Hence W = UEnV where U, V are words in

E1, . . . , En−1. That means U, V ∈ TLn−1, so we write U = ιn−1(U). As the trace

is cyclic, assume V = 1. Then, W = ιn−1(U)En.

t̃rn(ιn−1(U)En) = t̃rn−1(U) = λ trgrn−1(U) = λ trgrn (ιn−1(U)En)

where the first equality holds as t̃rn satisfies (2.20), the second holds by induction,

and the third holds as trgrn satisfies (2.20). It follows that t̃rn(W ) = λ trgrn (W ).

This is important, because we can equip TLn with a second trace. Recall

from Proposition 2.7.5 that we have a representation φ : TL → [1 : ∞]. Write

φj := φ|TLj
. Define the pullback trace on TLj to be the trace tr ◦φj : TLj → C.

Because tr satisfies the Markov property by assumption (Definition 2.7.1), it is

an easy calculation to show that the family {τ−j/2 tr ◦φj}nj=1 satisfies the Markov-

type property (2.20). We conclude:

Proposition 2.7.13. The pullback trace is proportional to the graphical trace.

Specifically, for all n ≥ 0, tr ◦φn = τn/2 trgrn on TLn(τ).

This is remarkable – the algebraic and tracial structure of the {εi} can be

described graphically. Conversely, some of the good properties of tr are inherited

by the trgrn . (For convenience, we re-state our implicit assumptions.)

Theorem 2.7.14. If {εi}∞i=1 ⊂ M is a family of projections satisfying Jones

relations with modulus τ , then trgrn is a positive trace on TLn(τ) for all n ≥ 1.

A priori, there’s no reason to expect a graphical trace is positive. Although

trgrn takes nonnegative values on diagrams, trgrn (x
∗x) may be negative if x is a
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linear combination of diagrams. Hence Theorem 2.7.14 is an extremely strong

constraint, which we use in Section 2.9 to constrain τ , and hence the index.

Trace-preserving reflection

The next tool we need to prove the index theorem is a ‘reflection’ map. Let

Σ1,n : TLn → TLn denote the ∗-automorphism given by reflecting diagrams across

a central vertical axis. Clearly, Σ1,n maps Ei 7→ En+1−i. Since the graphical trace

of a diagram U is the same whether strands are closed-off to the left or the right

(see discussion after Figure 2.4), Σ1,n is trace-preserving. In fact, this involution

descends to an involution on the algebras [n : m] = ⟨1, εn, . . . , εm⟩.

Lemma 2.7.15. Suppose n ≤ m. Then there exists a tr-preserving von Neumann

algebra automorphism σn,m : [n : m] → [n : m] mapping εi 7→ εm+n−i.

In [Jon83], a combinatorial argument is used to prove σn,m is well-defined. We

circumvent this by defining σ1,n as the quotient of Σ1,n, a map that’s obviously

well-defined as it can be graphically described.

Proof. We may as well n = 1. Recall φm = φ|TLm : TLm → [1 : m]. As this map

is surjective, consider it a quotient.

TLm TLm

[1 : m] [1 : m]

φ φ

σ1,m

Σ1,m

We claim that Σ1,m : TLm(τ) → TLm(τ) descends to the quotient. If it does,

then it descends to a map σ1,m sending εi 7→ εm+1−i, as required.

We need to show that φ(x) = 0 =⇒ φ (Σ1,m(x)) = 0. From Proposi-

tion 2.7.13, tr ◦φm is proportional to the graphical trace, and Σ1,m preserves the

graphical trace, so tr(φ(x)) = tr(φ (Σ1,m(x))) for all x ∈ TLm.

In particular, if φ(x) = 0, then 0 = tr(φ(x∗x)) = tr(φ (Σ1,m(x
∗x))). As tr

is faithful, φ (Σ1,m(x
∗x)) = 0. This argument shows σ1,m is well-defined, and

automatically trace-preserving because Σ1,m is.

In Definition 2.7.1, it’s clear that relations 1-3 (the algebraic Jones relations)

are symmetric under reversing the order of indices. The existence of the trace-

preserving reflection means tracial structure is also left intact by this reversal. For

example, the Markov property (Definition 2.7.1(4)) is preserved under reflection.
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Lemma 2.7.16. (Reflected Markov property)

tr(xεi) = τ tr(x) if x ∈ [i+ 1 : ∞].

Proof. Assume x is a word in εj for j ≥ i + 1. As words have finite length,

w ∈ [i + 1 : m] for some m ∈ N. Reflect the left side, apply the usual Markov

property, and reflect back: tr(xεi) = tr(σi,m(x)εm) = τ tr(σi,m(x)) = τ tr(x).

Because σ1,m preserves tracial structure, it respects conditional expectations16,

i.e. E[n:m] = σ1,m ◦ E[1:m−n+1] ◦ σ1,m. Then, one can take Proposition 2.7.10

and ‘reflect the indices’. E.g. to obtain the first result below, take Proposition

2.7.10(1) and send n→ m, n+ 1 → m− 1, etc.

Proposition 2.7.17. The following hold for all finite n,m ∈ N where the inter-

vals are nontrivial:

1. εnxεn = E[n+2:m](x)εn if x ∈ [n+ 1 : m].

2. E[n:m](en−1) = τ .

An key difference between Proposition 2.7.10 and its reflected counterpart

Proposition 2.7.17 is that the intervals above can have arbitrarily large right

bounds. Since we want to construct II1 factors from the [n : m], and II1 factors

are infinite-dimensional, we will need to take these right bounds to infinity. To

do so, we need to know how to compute conditional expectations like E[n:∞]′′ .

Recall [n : m] is the unital ∗-subalgebra generated by {εi}mi=n and [n : m]′′ is

the von Neumann algebra generated by {εi}mi=n. They are distinct when m = ∞.

Proposition 2.7.18. E[n:m]
SOT−−−→
m→∞

E[n:∞]′′ on [n− 1 : ∞]′′.

This result is stated in [Jon83, 4.1.12].

Proof. By relabelling indices, assume n = 2. First, we’ll prove that the sequence

{E[2:m](x)}m≥2 eventually stabilises for x in the dense subspace [1 : ∞]. As [1 : ∞]

is spanned by words in ε1, ε2, . . ., assume x is a word. As words are finite, x is

a word in ε1, . . . , εm0 for some m0 ∈ N. By Proposition 2.7.8, we can assume it

contains exactly one copy of εk where k is minimal among indices appearing in

x. That is, x = x1εkx2 for x1, x2 ∈ [k + 1 : m0] ⊂ [2 : m0]. Then, for all m ≥ m0,

16By Proposition 2.2.7, a trace-preserving conditional expectation is uniquely determined by

the trace.
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E[2:m](x) = E[2:m](x1εkx2) = x1E[2:m](εk)x2 =

x1εkx2 if m0 ≥ k ≥ 2.

τx1x2 if k = 1.

where the last equality holds by Proposition 2.7.17(2). The above expression for

E[2:m](x) is independent of m for m ≥ m0, so the sequence stabilises as claimed.

It is easy to show that conditional expectations have operator norm at most 1,

so {E[2:m]}m≥2 is a norm-bounded sequence of operators converging strongly on a

dense subset [1 : ∞] of [1 : ∞]′′. Note that E[2:m] maps [1 : ∞]′′ to [2 : m], so the

sequence as a whole can be defined as operators [1 : ∞]′′ → [2 : ∞]′′. A standard

functional analysis fact implies that the sequence converges strongly everywhere

to a bounded operator F : [1 : ∞]′′ → [2 : ∞]′′.

We claim F = E[2:∞]′′ on [1 : ∞]′′. It suffices to check the equivalent

characterisation of conditional expectations from Proposition 2.2.7, i.e. that

tr(F (x)y) = tr(xy) for all x ∈ [1 : ∞]′′, y ∈ [2 : ∞]′′. Indeed, it suffices to

check x, y in the dense subsets [1 : ∞] and [2 : ∞] respectively17. Let x ∈ [1 : i]

for large i and y ∈ [2 : j] for large j. For all k ≥ j, y ∈ [2 : k], so Proposition 2.2.7

implies tr(E[2:k](x)y) = tr(xy). Taking k → ∞, we find that tr(F (x)y) = tr(xy).

Hence E[2:∞]′′ = F = s-limm→∞E[2:m] on the requisite domain.

Armed with this result, we can take the identities from Proposition 2.7.17 and

take the limit as the right bounds go to infinity.

Proposition 2.7.19. For all n ∈ N,

1. εnxεn = E[n+2:∞]′′(x)εn if x ∈ [n+ 1 : ∞].

2. E[n:∞](en−1) = τ .

This concludes our preparation for the Jones index theorem. One key out-

come is the above, Proposition 2.7.19. It lets us work with infinitely-generated

intervals of the form [m : ∞], from which we will build subfactors of index values

4 cos2(π/n) in Section 2.8. The other key outcome is Theorem 2.7.14, which gives

a condition for the entire tower {TLj(τ)} to have positive graphical traces. We

use this in Section 2.9 this to rule out τ -values, and hence rule out index values.

17Because the trace, and F , are normal and hence ultraweakly continuous.
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2.8 The Jones index theorem: constructing a

subfactor

We now prove the Jones index theorem. One direction of the theorem asserts the

existence of subfactors of certain indices.

Theorem 2.8.1. (Jones index theorem – existence)

For every value in {4 cos2(π/n) : n ≥ 3} ∪ [4,∞], there exists a II1 subfactor

with index equal to that value.

We follow the proof of [Jon83].

The construction of a subfactor N ⊂ M with [M : N ] = ∞ can be done

with standard techniques; see [Jon09, 19.2.10]. For the finite values, the proof

separates into two cases: construction of subfactors with index in [4,∞), and

construction of subfactors with index 4 cos2(π/n).

The former is basically a classical construction and does not rely on the basic

construction or any other similarly powerful tools in subfactor theory except,

of course, for the notion of index. We sketch an argument. In their fourth

paper on von Neumann algebras, Murray and von Neumann [MN43, pp781-784]

constructed a II1 factor R known as the hyperfinite II1 factor which, among

many remarkable properties, satisfies pRp ∼= R whenever p ∈ R is nonzero (i.e.,

R is isomorphic to a corner of itself).

Let α ≥ 4. To exhibit a subfactor of index α, let d ∈ (0, 1) be such that
1
d
+ 1

1−d
= α. By Proposition 1.7.3, there exists a projection p ∈ R with trace

d. By the above remark, pRp ∼= R ∼= (1 − p)R(1 − p). Let θ : pRp → (1 −
p)R(1 − p) be an explicit isomorphism. Set S = {x + θ(x) : x ∈ pRp}. As

(pRp)((1 − p)R(1 − p)) = 0, multiplication in S is termwise with respect to

the terms x, θ(x). Consequently, if z + θ(z) ∈ Z(S), then z ∈ Z(pRp) = C1.
Hence S is a factor and hence a II1 factor because it inherits a trace. Evidently

pSp = pRp, and (1−p)S(1−p) = θ(pRp) = (1−p)R(1−p). Proposition 1.8.3(4)

gives a decomposition of the index as follows:

[R : S] = trR(p)
−1[pRp : pSp] + trR(1− p)−1[(1− p)R(1− p) : (1− p)S(1− p)]

=
1

d
+

1

1− d
= α.

Of course, this construction fails to exhibit a II1 subfactor for α < 4 as 1
d
+ 1

1−d

is minimised at 4 for d ∈ (0, 1).
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In marked contrast to the α ≥ 4 case, the construction of subfactors with index

4 cos2(π/n) belongs decidedly to modern subfactor theory; it relies integrally on

the theory of Jones towers and Jones relations. We will show that a family {εi}∞i=1

with Jones relations of modulus τ gives rise to a subfactor of index τ−1. (The

proof of Theorem 2.8.1 concludes after Corollary 2.8.4.)

Recall that [n : m] is the ∗-algebra generated by 1, εn, . . . , εm. Using the εi,

we build an inclusion of infinite-dimensional tracial von Neumann algebras. The

easiest choice is [2 : ∞]′′ ⊂ [1 : ∞]′′, as they differ by just one generator.

Theorem 2.8.2. Suppose {εi}∞i=1 is a family of projections satisfying the Jones

relations with modulus τ > 0. Let P = [1 : ∞]′′ and P (τ) = [2 : ∞]′′. Then

P (τ) ⊂ P is a II1 subfactor with index τ−1.

There are two distinct facts here – that P, P (τ) are II1 factors, and that the

index is τ−1. The first has a number of proofs. One is a lengthy but explicit

computation showing their centres are trivial, found in [GHJ89, 3.4.4]. Jones’s

original argument [Jon83, 4.1.9] invokes ergodic theory and is beyond our scope.

We will take for granted that P, P (τ) are II1 factors.

What is really important to the proof of the index theorem is the value of

the index [P : P (τ)]. To prove it is τ−1, we can form the basic construction

P1 = ⟨P, eP (τ)⟩. Then, by Proposition 2.4.4, we can compute the index with the

formula tr(eP (τ)) = [P : P (τ)]−1. But first, we must understand what P1 looks

like. (The proof of Theorem 2.8.2 concludes after the proof of Proposition 2.8.3.)

P has a nice generating set18 {ε1, ε2, ε3, . . .}, whose elements satisfy the Jones

relations. P1 has the generating set {eP (τ) , ε1, ε2, ε3, . . .}. Remarkably, eP (τ) is

compatible with the Jones relations. Namely, if we set ε0 = eP (τ) , then the

set {ε0, ε1, ε2, . . .} still satisfies the Jones relations. In other words, the basic

construction simply extends the Jones relations downwards by a step.

Proposition 2.8.3. If ε0 := eP (τ), then {εi}∞i=0 satisfy the Jones relations with

modulus τ .

Pieces of this result are scattered across [Jon83]; we gather them in one proof.

Proof. Since {εi}∞i=1 already satisfy the Jones relations, it remains to prove the

algebraic Jones relations involving ε0:

1. ε20 = ε0.

18This set generates P as a von Neumann algebra. Note that 1 can always be omitted from

a generating set, by Definition 1.2.6.
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2. ε0ε1ε0 = τε0 and ε1ε0ε1 = τε1.

3. ε0εi = ε0εi if i ≥ 2.

as also the Markov property, which has to be modified to account for the presence

of ε0:

4. tr(xεi) = τ tr(x) if w ∈ [0 : i].

The first relation is immediate as ε0 is a projection. The third relation is im-

mediate as εi ∈ P (τ) for i ≥ 2, and, by Proposition 2.2.9(2), ε0 = eP (τ) commutes

with P (τ). The second relation is more nontrivial. To prove the first part:

ε0ε1ε0 = eP (τ)ε1eP (τ) = EP (τ)(ε1)eP (τ) = E[2:∞]′′(ε1)eP (τ) = τeP (τ) = τε0.

where the second equality is by Proposition 2.2.9(1), and the second from the right

is by Proposition 2.7.19(2). (This is where we needed to invoke our technical facts

about ‘infinite intervals’.) The second part is more involved, but similar.

It remains to check the Markov property. We note that, because the trace-

preserving reflection exists, it suffices to verify the reflected Markov property

tr(xεi) = τ tr(x) for x ∈ [i+1 : ∞]. This is advantageous, because this is already

true for i ≥ 1, due to Lemma 2.7.16. We only need to prove the equality in the

case where i = 0, i.e. tr(xeP (τ)) = τ tr(x) for x ∈ P . This tautologically the

statement that P (τ) ⊂ P ⊂ P1 is Markov with modulus τ (Definition 2.3.2).

We will show that P (τ) ⊂ P ⊂ P1 is Markov with modulus [P : P (τ)]−1, and

then show that the moduli agree. By the existence-uniqueness condition from

Theorem 2.4.6, if P (τ) ⊂ P has finite index, then P (τ) ⊂ P has a Jones tower

with modulus [P : P (τ)]−1, which implies in particular that P (τ) ⊂ P ⊂ P1 is

Markov with modulus [P : P (τ)]−1. Hence we only need to show that P (τ) ⊂ P

has finite index. But recall, if (P (τ))′ is the commutant of P (τ) on L2(P ), then

[P : P (τ)] <∞ ⇐⇒ (P (τ))′ is finite ⇐⇒ P1 is finite.

where the first equivalence is a basic fact about the index (Proposition 1.8.3) and

the latter holds as (P (τ))′ is antilinearly isomorphic to P1 (Proposition 2.2.15).

Hence we need only show that the identity in P1 is finite. Although P1 contains

a II1 factor P , which is finite, finiteness in a sub-von-Neumann algebra does not

imply finiteness in the containing algebra. In fact, exhibiting just one nonzero

projection that is finite in both P and P1 will force P1 to be finite.

Because we already proved the second Jones relation, we have that ε0ε1ε0 =

τε0 and ε1ε0ε1 = τε1. If we set u = τ−1/2ε1ε0, then uu
∗ = ε1 and u∗u = ε0, and
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hence ε1 and ε0 are Murray-von Neumann equivalent. We have that ε0 = eP (τ)

is finite in P1 by Corollary 2.2.13, and hence ε1 must also be finite in P1 as

equivalence preserves finiteness. Hence ε1 is finite in both P and P1. We claim

that this means P1 is finite.

The following argument is from [GHJ89, p155]. To show 1 is finite in P1, we’ll

decompose it as 1 =
∑d

i=1 qi where each qi ∈ P and is finite in P1.

To show qi is finite, the trick is to show that tr(qi) ≤ tr(ε1). As P is a II1

factor, this implies (by Proposition 1.7.3) that qi ⪯ ε1 in P . Unlike finiteness,

Murray-von Neumann ordering is preserved under inclusions, so qi ⪯ ε1 in P1 as

well, and hence the qi are finite because ε1 is.

Let d ∈ N be such that tr(ε1) > 1/d. By Proposition 1.7.3, as P is a II1

factor, it contains a projection q1 with tr(q1) = 1/d ≤ tr(ε1). By Lemma 1.4.4,

(1−q1)P (1−q1) is a factor and hence a II1 factor
19. We can hence find a projection

q2 in it whose trace in P is 1/d. Then do the same for (1−q1)(1−q2)P (1−q2)(1−q1)
and so on, to obtain mutually orthogonal projections q1, . . . , qd, where each qi has

trace tr(qi) = 1/d ≤ tr(ε1). Hence, as explained in the above paragraph the qi

are all finite in P1. Moreover,
∑d

i=1 qi = 1, which implies 1 is finite in P1.

We are done, so long as we can show that the Markov moduli agree, i.e.

τ = [P : P (τ)]−1. But equivalent projections have the same trace, so τ = tr(ε1) =

tr(ε0) = tr(eP (τ)) = [P : P (τ)]−1, where the first is by Definition 2.7.1, and the

last is by Proposition 2.4.4.

We have the formula [P : P (τ)] = τ−1, concluding the proof of Theorem

2.8.2. But the formula is just one consequence of a profound result: the basic

construction attaches a projection ε0 to {ε1, ε2, . . .}′′ while seamlessly maintaining

the Jones relations. Hence we write P1 = [0 : ∞]′′. Of course, the phenomenon

remains true if the basic construction is iterated.

Corollary 2.8.4. As usual, let {Pn}∞n=−1 denote the Jones tower of P (τ) ⊂ P

and en ∈ Pn be the Jones projections. If we let εj := e1−j ∈ P1−j, then {εi}∞i=−∞

satisfy the Jones relations with Markov modulus τ . Hence Pi = [1− i : ∞]′′.

In short: the Jones tower of P (τ) ⊂ P extends the sequence {ε1, ε2, . . .} down-

wards to negative infinity. We use this later; for now, the important result is the

formula [P : P (τ)] = τ−1. This shows that we can control the index of P (τ) ⊂ P , a

quantity that’s a priori hard to compute, just by tuning an algebraic parameter.

19Because it inherits a trace.
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Recall that we already constructed subfactors with index four or greater, so the

last step to prove Theorem 2.8.1 is to construct subfactors of index 4 cos2(π/n).

Proof. (Theorem 2.8.1)

As remarked after Theorem 2.5.11, for all n ≥ 3, because the Coxeter diagram

An−1 has norm-squared 4 cos2(π/n), it induces a Jones tower of finite-dimensional

algebras, {Bi}∞i=−1, with modulus τ = 1/(4 cos2(π/n)). By definition of the Jones

tower (Definition 2.3.1), the tower contains a sequence {ei}i∈N. By Theorem 2.7.3,

if we set εi := ei, then {ei}i∈N satisfy the Jones relations with modulus τ . Hence

we can apply Theorem 2.8.2 to obtain the subfactor P (τ) ⊂ P , which has index

[P : P (τ)] = τ−1 = 4 cos2(π/n).

This establishes that every index value appearing in the Jones index theorem

is indeed realised by a subfactor. It remains to constrain the index to those values.

Before we do this in the following section, we make an observation. If one had

a II1 subfactor N ⊂ M to begin with, then one could substitute the tower {Bi}
used above for the Jones tower {Mi}∞i=−1 of N ⊂ M . As its Markov modulus is

[M : N ]−1, the procedure would return a subfactor P ([M :N ]−1) ⊂ P with index

[M : N ]. It is not, in general, isomorphic to the subfactor one started with.

In fact, if τ−1 = 4 cos2(π/n) for n ≥ 3, the subfactor P (τ) ⊂ P depends only

on n [Pop90, 6.7] [Pop94, p231]. That is, no matter how one obtains a sequence

{εi}∞i=1 satisfying Jones relations with modulus 1/(4 cos2(π/n)), it produces the

same subfactor, up to isomorphism. E.g. one could choose a different graph with

norm-squared 4 cos2(π/n) [GHJ89, 1.4.3]. We give this subfactor a name.

Definition 2.8.5. Let n ≥ 3, and let {εi}∞i=1 be any family of projections satis-

fying Jones relations with modulus 1/(4(cos2(π/n))). Define the Jones subfactor

J (n) ⊂ J by J = [1 : ∞]′′, J (n) = [2 : ∞]′′.

We know J (n) ⊂ J has index 4 cos2(π/n), but not much else. In Chapter 3,

we will embark on more extensive study. For now, we prove the other half of the

index theorem, which requires us to constrain the values of the index.

2.9 The Jones index theorem: constraining the

index

The proof in this section is essentially due to Hans Wenzl [Wen87]; see also [Pen14,

pp13-15].
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Theorem 2.9.1. (Jones index theorem - constraint on the index)

If N ⊂M is a II1 subfactor, then

[M : N ] ∈ {4 cos2(π/n) : n ≥ 3} ∪ [4,∞]. (2.21)

The point of developing the theory of the Jones/Temperley-Lieb relations is

to reduce questions about subfactors to questions about the relations. If N ⊂M

is a finite index II1 subfactor, then it has a Jones tower of modulus [M : N ]−1,

and the projections {ei}i∈N satisfy Jones relations. Theorem 2.7.14 then implies

that the graphical trace trgrj : TLj([M : N ]−1) → C is positive for all j ∈ N. To

prove Theorem 2.9.1, it hence suffices to prove the following:

Theorem 2.9.2. If all graphical traces in the tower {TLj(τ)}j∈N are positive,

then τ−1 ∈ {4 cos2(π/n) : n = 3, 4, 5, . . .} ∪ [4,∞).

(The proof concludes after Lemma 2.9.5.) This is a substantially more ap-

proachable task. To rule out a value of τ , we need to exhibit just one nonpositive

graphical trace trgrm. To prove trgrm is nonpositive, we need to exhibit just one posi-

tive element f = x∗x ∈ TLm(τ) such that trm(f) < 0. We do this by constructing

(further below, in Definition 2.9.4) a finite or infinite sequence f (0), . . . , f (j), . . .

of nontrivial projections, where f (j) ∈ TLj(τ) for all j.

As a preliminary to the proof, we introduce the notion of a quantum integer.

Definition 2.9.3. Suppose q ∈ {eiθ : θ ∈ (0, π/2)} ∪ [1,∞). Then, for n ∈
{0, 1, 2, . . .}, the quantum integer [n]q is defined by

[n]q :=
qn − q−n

q − q−1
= qn−1 + qn−3 + . . .+ q−(n−1) (2.22)

where we take [n]1 := n.

We re-parameterise the ‘loop value’ τ−1/2 by choosing q so that τ−1/2 = [2]q.

Specifically, let q = q(τ) be the positive (if real) or principal (if complex) root of

0 = q2 − (τ−1/2)q + 1. One easily checks that q lies in the domain given above

and that [2]q = q + q−1 = τ−1/2. By checking the discriminant, we see that, if

τ−1 < 4, then q is in the complex part of its domain, while if τ−1 ≥ 4, then q ≥ 1.

Some useful formulae are as follows [Mor17, p1] [Pen14, pp14-15]:

[m]q[n+ 1]q − [m− n]q = [m+ 1]q[n]q whenever n ≤ m. (2.23)

[n]q =
einθ − e−inθ

eiθ − e−iθ
=

sin(nθ)

sin(θ)
when q ∈ {eiθ : θ ∈ (0, π/2)}. (2.24)

We define the sequence alluded to above as follows:
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Definition 2.9.4. Define the 0th Jones-Wenzl idempotent f (0) to be the identity,

or single-strand diagram, in TL0([2]q). Inductively for j ≥ 1, if f (j−1) is defined

and [j + 1]q is nonzero, then define the jth Jones-Wenzl idempotent, f (j) ∈
TLj([2]q), to be the following linear combination of diagrams:

f (j) :=

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

f (j−1) − [j]q
[j+1]q

f (j−1)

f (j−1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

.

.

.

.

This definition is essentially due to Hans Wenzl [Wen87], although the pictorial

formula came later (see, e.g., [Pen14]). One can check inductively that these are

indeed idempotents (in fact, projections), i.e.
(
f (j)
)2

= f (j).

It’s clear from this definition that, if j is the minimal integer such that [j]q = 0,

then f (j−2) is the highest Jones-Wenzl idempotent that can be defined (for that

particular choice of q).

We compute the sequence trgr0 (f
(0)), trgr1 (f

(1)), . . . to see if it contains a negative

number, which would be a counterexample to positivity. There is a nice formula:

Lemma 2.9.5. If j ≥ 0 is such that f (j) is defined, then trj(f
(j)) = [j + 2]q.

Proof. Proceed by induction. trgr0 (f
(0)) = trgr0 (1) = τ−1/2 = [2]q, the loop value.

For j ≥ 1, assume f (j) is defined and assume trgrj−1(f
(j−1)) = [j + 1]q. Compute

the trace of f (j) by ‘closing off’ the diagrams, as usual; see Figure 2.5.

trgrj (f
(j)) =

.

.

. ..

.

.

.

. ..

.

.

.

. ..

.

.

.

. ..

.

.

.. .

.

.. .

.

.. .

.

.. .

.

.. .

.

.

. .

f (j−1) − [j]q
[j+1]q

f (j−1)

f (j−1)

.

.

. ..

.

.

.

.

.. .

.

.

. ..

.

.

.

. .

.

.

.

.

. ..

.

.

.

.

.. .

.

.

. ..

.

.

.. .

. .

. .

.

.

. .

.

.. .

.

.

Figure 2.5: Computing the trace of a Jones-Wenzl idempotent.

The left-hand diagram has the value [2]q tr
gr
j−1(f

(j−1)), owing to the extra loop

(in red). By shrinking the red strand in the right-hand diagram, we realise that

it has the value tr(f (j−1)f (j−1)) = tr(f (j−1)), as f (j) is an idempotent. Hence,

trgrj (f
(j)) =

(
[2]q −

[j]q
[j + 1]q

)
trgrj−1(f

(j−1)) = [2]q[j + 1]q − [j]q

by the inductive assumption. By (2.23), trgrj (f
(j)) = [j + 2]q[1]q = [j + 2]q.
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We use the f (j) to find counterexamples to positivity of graphical traces.

Proof. (Theorem 2.9.2)

As the values of τ−1 that we want to reject lie between 0 and 4, assume that

τ−1 < 4. Recall τ−1/2 = [2]q, and recall from the discussion after Definition 2.9.3

that τ−1 < 4 is equivalent to q ∈ {eiθ : θ ∈ (0, π/2)}. By Lemma 2.9.5, and

(2.24), we find that the sequence of traces can be expressed three ways:

trgrj−2(f
(j−2)) = [j]q =

sin(jθ)

sin(θ)
. (2.25)

Let m ∈ N be minimal such that sin(mθ) ≤ 0. By (2.25), [j]q > 0 for

j ≤ m−1, meaning that the sequence can be defined at least up to trgrm−2(f
(m−2)),

by Definition 2.9.4.

If sin(mθ) = 0, then [m]q = 0, so the sequence can’t be continued any further.

Because trgrj−2(f
(j−2)) = sin(jθ)/ sin(θ) ≥ 0 for j ≤ m, this means that we fail to

find a counterexample to positivity before the sequence terminates.

However, if sin(mθ) < 0, then trgrm−2(f
(m−2)) < 0, which is a counterexample.

If π/θ ∈ N, then it’s clear that m = π/θ, and sin(mθ) = 0, so we obtain no

counterexample. If π/θ /∈ N, we claim we obtain one. Set m = ⌊π/θ⌋+ 1.

0 < m− 1 <
π

θ
< m <

2π

θ

=⇒ 0 < (m− 1)θ < π < mθ < 2π.

and therefore, as required, sin(jθ) > 0 for j ≤ m−1, whereas sin (mθ) < 0. Hence

we obtain a counterexample to positivity of the graphical trace when π/θ /∈ N.
But, by (2.24), τ−1 = [2]2q = (sin(2θ)/ sin(θ))2 = 4 cos2(θ). Thus the constraint

π/θ /∈ N is equivalent to the constraint τ−1 ̸= 4 cos2(π/n), as required.

This proves that, if all graphical traces in the tower {TLj(τ)}j≥0 are posi-

tive, then τ−1 is confined to {4 cos2(π/n) : n ≥ 3} ∪ [4,∞]. As explained after

the statement of Theorem 2.9.1, a subfactor of index [M : N ] induces a tower

{TLj([M : N ]−1)}j≥0 where each graphical trace is positive. Thus, as an immedi-

ate corollary of the above proof, [M : N ] must lie in {4 cos2(π/n) : n ≥ 3}∪[4,∞].

As we have already constructed subfactors of indices in the allowable set, we

obtain our hard-won reward: the Jones index theorem.

Theorem 2.9.6. (Jones index theorem)

{[M : N ] : N ⊂M is a II1 subfactor.} = {4 cos2(π/n) : n ≥ 3} ∪ [4,∞].
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2.10 Conclusion

This concludes our treatment of the Jones index theorem. We have both con-

strained the index to the set of allowable values, and demonstrated the existence

of a subfactor with each of those index values.

It is remarkable that the Jones/Temperley-Lieb relations play a key role in

both directions of the proof. In retrospect, the index theorem can be viewed as

a hybrid theorem in subfactor/Temperley-Lieb theory.

However, the most enduring contribution of [Jon83] to subfactor theory is the

basic construction and the Jones tower. We have seen that the index is nothing

more than a quantity which encodes the Markov modulus – i.e., the minimal

amount of information about the tower. In the following chapter, we address the

extraction of stronger invariants from the Jones tower.



Chapter 3

The principal graph

3.1 Introduction

‘Index for Subfactors’ [Jon83] introduced the index and Jones tower of a II1

subfactor N ⊂ M , setting the foundations of modern II1 subfactor theory. We

witnessed the value of the Jones tower – it unfolds emergent algebraic structure

(e.g. the Jones relations) from N ⊂M . However, it is an infinite tower of infinite-

dimensional objects and is generally extremely difficult to compute1. It is hence

natural to ask: “Can we extract more tractable invariants from the Jones tower?”

In this chapter, we introduce two major invariants which appeared within a

decade of [Jon83], and, together with the index, form the three most important

invariants2 of a subfactor.

The first is the standard invariant [Ocn88] [GHJ89] [Pop95]. Given a II1

subfactor N ⊂ M , the standard invariant is formed by intersecting the Jones

tower with commutants – it consists of the pair of towers {N ′ ∩Mn}n≥−1 and

{M ′ ∩Mn}n≥0. Remarkably, these towers consist of finite-dimensional algebras,

and are hence substantially easier to study than the Jones tower.

From the standard invariant, we construct another invariant: a pair of graphs

known as the principal graph Γ and dual principal graph Γ′. We prove the non-

trivial fact that, if the principal graphs happen to be finite, then they generalise

the index via the relation ∥Γ∥2 = [M : N ] = ∥Γ′∥2. Hence, by applying graph

theory techniques, we obtain a second proof of the Jones index theorem that is

independent of the first.

1Except for very simple subfactors such as the Jones subfactor J (n) ⊂ J of Definition 2.8.5.
2Note we don’t call the Jones tower an invariant for a subfactor, because it is an equivalent

object to a subfactor (as it is unique for N ⊂M , and N ⊂M can be recovered from it).

67
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We also leverage these invariants to better understand the Jones subfactor

J (n) ⊂ J with index 4 cos2(π/n), given in Definition 2.8.5. We compute the

standard invariant and principal graph for this subfactor. These computations

are well-known to experts; we give accessible proofs. By the end of this chapter,

we will understand nearly all there is to know about this subfactor.

This chapter draws most heavily on the monograph of Goodman, de la Harpe

and Jones [GHJ89], a paper of Sorin Popa [Pop90], and later writings by Dietmar

Bisch [Bis97].

3.2 The standard invariant

Our intuition suggests that invariant objects are often built from von Neumann

algebras and their commutants. For example, the centre of M can be expressed

as Z(M) =M ′∩M . Then, a natural family of objects to consider are the relative

commutants M ′
n∩Mm for n,m ∈ {−1, 0, . . . , }. Note that, although commutants

are spatial, relative commutants are well-defined independently of representation,

as M ′
n ∩Mm can be written purely abstractly as M ′

n ∩Mm = {x ∈ Mm : xy =

yx for all y ∈Mn.}. In fact, these relative commutants are finite-dimensional.

Proposition 3.2.1. Suppose A,B are II1 factors such that [B : A] < ∞. Then

A′ ∩B is finite-dimensional with C-dimension dimA′ ∩B ≤ [B : A].

Proof. This proof follows [Jon83, 2.2.3], [GHJ89, 3.6.2]. Suppose {pi}ki=1 ⊂ A′∩B
is a partition of unity, i.e. the pi are mutually orthogonal and

∑
i pi = 1. We will

show {pi} cannot be arbitrarily large.

By Proposition 1.8.3(4), [pBp : Ap] = trA′(p) trB(p)[B : A] for any projection

p ∈ A′ ∩B. As
∑

i trA′(pi) = 1, we can decompose the index:

[B : A] =
k∑

i=1

(trB(pi))
−1 [piBpi : Api] ≥

k∑
i=1

(trB(pi))
−1

as indexes are always at least 1 (Proposition 1.8.3(1)). Note 0 ≤ trB(pi) ≤ 1 and∑k
i=1 trB(pi) = 1. This sum is minimised when trB(pi) = k−1 for each i. Hence,

[B : A] ≥ k2 (3.1)

whenever there exists a partition of unity of size k in A′ ∩B.

If A′∩B is infinite-dimensional, a partition of unity can always be refined into

a larger one, contradicting (3.1) as [B : A] <∞. Hence A′∩B is finite dimensional
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and so isomorphic to
⊕m

j=1Mnj
(C) for some nj,m. By taking matrices with 1

in one diagonal entry and 0 elsewhere, we get a partition of unity {pi} of size

k =
∑m

j=1 nj. It follows that

[B : A] ≥
(

m∑
j=1

nj

)2

≥
m∑
j=1

n2
j = dim(A′ ∩B).

Corollary 3.2.2. If [B : A] < 4, then A′ ∩B = C1.

Proof. If A′∩B were nontrivial, it would contain a partition of unity of size k > 1,

implying [B : A] ≥ 4 by (3.1).

Proposition 3.2.1 shows that each tower {M ′
m ∩ Mn}n≥m consists of finite-

dimensional algebras, so it’s a valuable source of invariants. In fact, there exists

a 2-shift, a family of trace- and inclusion-preserving isomorphisms M ′
m ∩Mn →

M ′
m+2∩Mn+2. (See, e.g. [Bis97, 2.13]; also [PP86] [PP88].) Hence no data is lost

by restricting attention to the first two towers (called towers despite being drawn

horizontally below).

Definition 3.2.3. Suppose N ⊂ M is a II1 subfactor. Then the standard in-

variant of N ⊂M consists of the following towers. The derived tower of N ⊂M

refers to the first tower, while the dual derived tower refers to the second tower.

C1 = N ′ ∩N N ′ ∩M N ′ ∩M1 N ′ ∩M2 . . .

C1 =M ′ ∩M M ′ ∩M1 M ′ ∩M2 . . .

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂

⊂ ⊂ ⊂

The dual derived tower is so-called because it is itself the derived tower of

M ⊂ M1, which is antilinearly isomorphic by Ad J to M ′ ⊂ N ′, called the dual

subfactor. Hence results about derived towers also apply to the dual, so we never

state results specifically for the latter.

It is worth clarifying precisely what data is included in these invariants. The

derived tower consists of the algebras N ′ ∩Mn, the inclusion maps N ′ ∩Mn ⊂
N ′ ∩ Mn+1, and the restriction of tr to each algebra. The standard invariant

consists of the data of both derived towers in addition to the inclusion maps

between towers, i.e. M ′ ∩Mn ⊂ N ′ ∩Mn.
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As its name suggests, the standard invariant has become the most important

invariant of a II1 subfactor. As it consists of finite-dimensional objects, it is

far more tractable than the Jones tower itself. We will compute the standard

invariant of a II1 subfactor that we have already seen: the Jones subfactor J (n) ⊂
J , defined in Definition 2.8.5. However, first we must update our algebraic tools.

Commuting squares

The conditional expectation is a strong tool for probing towers of algebras, where

the inclusions form a linear sequence. To work with the standard invariant, we

need to handle squares of inclusions. Suppose A,B,C,D are tracial von Neumann

algebras and the following trace-preserving inclusions hold.

C D

A B

EC

EA EB

⊂
⊃ ⊃

⊂

The diagram suggests that EC is a ‘horizontal expectation’ and EB is a ‘ver-

tical expectation’. But, in general, this is inappropriate terminology. If x ∈ B,

then a priori, EC(x) is in C but possibly not A; i.e. the map may ‘move diag-

onally’ instead of horizontally. The commuting square condition [Pop83a] is the

appropriate requirement to make this terminology coherent.

Definition 3.2.4. Suppose A,B,C,D are tracial von Neumann algebras and the

above square of tracial inclusions holds. It is a commuting square if any of the

following four equivalent identities, called commuting square conditions, hold.

EC ◦ EB = EA or EB ◦ EC = EA, (3.2)

EC |B = EA|B or EB|C = EA|C . (3.3)

For a proof of the equivalence, see [GHJ89, 4.2.1] [Pop83b, 2.1].

Proposition 3.2.5. If A ⊂ B is an inclusion of tracial von Neumann algebras

and S ⊂ B is a self-adjoint set, the following square commutes:

A B

S ′ ∩ A S ′ ∩B

⊂

⊃ ⊃

⊂
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See [GHJ89, 4.2.7]. In particular, this implies that every square formed by

the standard invariant (as shown in Definition 3.2.3) is a commuting square.

Equipped with Proposition 3.2.5, we can now compute a standard invariant.

3.3 Standard invariant of the Jones subfactor

We compute the standard invariant of the Jones subfactor J (m) ⊂ J , defined

in Definition 2.8.5 for m ≥ 3. We briefly recall its construction3. By Theorem

2.5.11, the type Am−1 Coxeter diagram4 induces a Jones tower with Markov

modulus τ = 1/ (4 cos2(π/m)) when m ≥ 3. Let {εi}∞i=1 denote the sequence of

Jones projections in this tower.

Recall {εi}i∈N satisfies the Jones relations with Markov modulus τ , by The-

orem 2.7.3. Recall [i : j] is the ∗-algebra generated by 1, εi, εi+1, . . . , εj. Then

J (m) ⊂ J is defined by J (m) = [2 : ∞]′′, J = [1 : ∞]′′, with index τ−1 =

4 cos2(π/m). As [1 : ∞], [2 : ∞] are representations of TL(τ), the Temperley-

Lieb algebra5, we say J (m) ⊂ J is a subfactor generated by Temperley-Lieb.

Unusually, we will explicitly form the Jones tower, then compute the standard

invariant from within it – in general, the Jones tower is extremely hard to describe.

By definition of the Jones tower, Jn = ⟨Jn−1, en⟩. Expanding Jn−1, Jn−2, and so

on in this way, it’s clear Jn is generated by J ∪ {e1, e2, . . . , en}. J is by definition

generated by {εi}∞i=1. From Corollary 2.8.4, recall that, if we write ε0, ε−1, ε−2, . . .

as notation for e1, e2, e3, . . ., then the extended family {εi}i∈Z also satisfies the

Jones relations. Therefore, we can write Jn = [1− n : ∞]′′.

We now compute the standard invariant. Actually, it suffices to compute the

derived tower; the same procedure works for the dual tower.

Proposition 3.3.1. Suppose J (m) ⊂ J is the Jones subfactor for m ≥ 3. Then,

for n ≥ −1,

(J (m))′ ∩ Jn = [1− n : 0]. (3.4)

To gain intuition for this proposition, observe that, by definition,

(J (m))′ ∩ Jn = [2 : ∞]′ ∩ [1− n : ∞]′′ (3.5)

By the Jones relations, if εj commutes with [2 : ∞], then j ≤ 0. Hence, the only

εj ∈ [2 : ∞]′ ∩ [1− n : ∞]′′ are ε1−n, . . . , ε0. Therefore, proving (3.4) amounts to

3Actually, just one possible construction, as we explained above Definition 2.8.5.
4Also known as the linear graph on m− 1 vertices.
5By Proposition 2.7.5.
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showing that (J (m))′ ∩ Jn is generated by the εj it contains. A one-line summary

is in [GHJ89, 4.7.b.]. We expand it to a proof.

Proof. We prove the n = −1, 0 cases separately. In both cases, [1 − n : 0] is the

trivial algebra C1. As J−1 is a factor, (J−1)
′∩J−1 = C1. As [P : J (m)] = τ−1 < 4,

Corollary 3.2.2 implies (J (m))′ ∩ J = C1. This finishes the n = −1, 0 cases.

For the general case, fix n ≥ 1. As [1 − n : 0] and [2 : ∞] commute, the

inclusion [1−n : 0] ⊂ (J (m))′∩Jn is immediate. For the reverse inclusion of (3.4),

we write Fi : Jn → [i : ∞]′ ∩ Jn for the trace-preserving conditional expectation

for i ≥ 2. The inclusion we need to prove is equivalent to imF2 ⊂ [1− n : 0].

We first prove a similar inclusion, ‘shifted up by one’: imF3 ⊂ [1− n : 1]. A

necessary condition is that εi /∈ imF3 for i ≥ 2. We will show that F3(εi) is a

scalar. In fact, we can show the stronger6 fact that Fi+1(εi) is a scalar for i ≥ 2.

By Proposition 3.2.5, the following square is commuting.

[i+ 1 : ∞]′ ∩ [1− n : ∞]′′ [1− n : ∞]′′

[i+ 1 : ∞]′ ∩ [i : ∞]′′ [i : ∞]′′;

Fi+1

tr

⊂
⊃ ⊃

⊂

The top horizontal conditional expectation is Fi+1, by definition.

By a shift of indices, the bottom-left corner [i+1 : ∞]′∩ [i : ∞]′′ is isomorphic

to [2 : ∞]′ ∩ [1 : ∞]′′ = (J (m))′ ∩ J = C1, where the first equality is by (3.5), and

the latter was shown at the start of this proof. Thus the diagonal expectation is

an expectation onto a trivial subalgebra, which is just the trace.

By the commuting square condition, diagonal expectation agrees with horizon-

tal expectation when applied to the bottom-right corner, i.e. tr |[i:∞]′′ = Fi+1|[i:∞]′′ .

As εi ∈ [i : ∞]′′,

Fi+1(εi) = tr(εi) (3.6)

as we aimed to prove. As mentioned, we will leverage this to show imF3 ⊂ [1−n :

1]. As imF3 = F3(Jn) = F3 ([1− n : ∞]′′), to show imF3 ⊂ [1− n : 1] it suffices

to prove F3([1− n : k]) ⊂ [1− n : 1] for all k ≥ 1.

Induct on k. This is immediate when k = 1 as [1− n : 1] ⊂ imF3 so F3 acts

as the identity on it. For k ≥ 2, assume the k− 1 case holds. Let w be a word in

6Stronger as F3 ◦ Fi+1 = F3 for i ≥ 2, by the tower property (Proposition 2.2.8).
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ε1−n, . . . , εk. By Proposition 2.7.8, up to scaling w = uεkv where u, v are words

in ε1−n, . . . , εk−1. Then,

F3(uεkv) = F3(Fk+1(uεkv)) (F3 ◦ Fk+1 = F3 for k ≥ 2)

= F3(uFk+1(εk)v) (u, v ∈ [k + 1 : ∞]′ ∩ Jn)
= tr(εk)F3(uv) (by 3.6)

∈ F3([1− n : k − 1])

⊂ [1− n : 1]

by induction, and this proves imF3 ⊂ [1− n : 1].

To show this implies imF2 ⊂ [1 − n : 0], take x ∈ imF2 = [2 : ∞]′ ∩ Jn.

Certainly x ∈ imF3, so x ∈ [1− n : 1]. Hence x ∈ [2 : ∞]′ ∩ [1− n : 1].

A priori, x is a limit of linear combinations of words in ε1−n, . . . , ε1. Notably,

ε1 /∈ [2 : ∞]′. We’d like to leverage this fact to show ε1 can be excluded. Without

loss of generality, we can assume x is a limit of reduced words, i.e.

x = lim
l→∞

ulε1vl

where um, vm are words in ε1−n, . . . , ε0. Let E be the conditional expectation

onto [2 : ∞]′ ∩ [1− n : 1]. Applying E,

x = lim
l→∞

ulE(ε1)vl

We verify that E(ε1) = τ , using the characterisation of E by Proposition 2.2.7.

For any y ∈ [2 : ∞]′ ∩ [1− n : 1],

tr(ε1y) = τ−1 tr(ε1yε2) = τ−1 tr(ε2ε1ε2y) = tr(ε2y) = τ tr(y).

The first and last equality hold by the Markov property (Definition 2.7.1); the

second holds because ε2 commutes with y; the third holds by the second algebraic

Jones relation. Hence, E(ε1) = τ . It follows that x = liml→∞ τulvl, and so

x ∈ [1− n : 0], finishing the proof.

The consequence of Theorem 3.3.1 is that the derived tower {J ′ ∩ Jn}n≥0 of

J (m) ⊂ J is identical to the sequence {[1− n : 0]}n≥−1. Applying the proposition

mutatis mutandis to the dual subfactor J ⊂ J1 implies that the dual derived

tower {(J (m))′∩Jn} is identical to {[1−n : −1]}n≥0. Together, these towers form

the standard invariant of J (m) ⊂ J .

In fact, by applying the trace-preserving reflection, we can see the following:
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Corollary 3.3.2. The standard invariant of J (m) ⊂ J is isomorphic to the pair

{[2 : n]}n≥0, {[1 : n]}n≥−1 by an inclusion- and trace-preserving isomorphism

sending ei 7→ εi.

Proof. Reflect [1−n : 0] and [1−n : −1] onto [1 : n] and [2 : n], respectively, with

the trace-preserving reflection sending ε1−i 7→ εi. But recall (as discussed above

Theorem 3.3.1) ε1−i is just notation for ei, so indeed the isomorphism maps ei to

εi.

Because the isomorphism is inclusion-preserving, it extends to an isomorphism

on closures of unions. That is,
⋃

n≥0 J
′ ∩ Jn ⊂ ⋃

n≥−1(J
(m))′ ∩ Jn is isomorphic

to
⋃

n≥0[2 : n] ⊂ ⋃n≥−1[1 : n].

But clearly
⋃

n≥0[2 : n] = [2 : ∞] = [2 : ∞]′′ = J (m), and by the same argu-

ment we have that
⋃

n≥0[1 : n] = J . That is,
⋃

n≥0 J
′ ∩ Jn ⊂ ⋃

n≥−1(J
(m))′ ∩ Jn

is isomorphic to J (m) ⊂ J . In other words, J (m) ⊂ J can be recovered from its

standard invariant by taking a union and a closure.

More generally, certain families of well-behaved subfactors can always be re-

constructed from their standard invariants, although via more complicated con-

structions than simply taking a union and a closure [Ocn88, p134] [Pop90, p33]

[Pop94]. Owing to this, subfactor theorists today typically work on classify-

ing standard invariants rather than II1 subfactors themselves [JMS14] [Izu+15]

[AMP15]. As standard invariants consist of finite-dimensional objects, this is far

simpler than classifying general II1 subfactors, but still very challenging.

In this challenge, the principal graphs Γ,Γ′ are an essential tool. They are

combinatorial invariants of intermediate strength between the standard invariant

and the index. They contain enough data that, with (much) work, it is possible

to (nonuniquely7) recover a standard invariant from them.

3.4 The full Bratteli diagram

Fix a finite index subfactor N ⊂M . A key goal of this chapter is to construct the

principal graphs Γ,Γ′ for N ⊂M . To do this, we will first extract a larger graph

β, the full Bratteli diagram, from the standard invariant, and later (in Section

3.2) reduce β to Γ.

To form β, we discard enough structure from the standard invariant so that

the remaining data is combinatorial. By Definition 3.2.3, the data of the standard

7See Table 3.2 for examples of principal graphs which come from more than one standard

invariant.
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invariant consists of the derived tower {N ′ ∩Mi}∞i=−1, dual tower {M ′ ∩Mi}∞i=0,

inclusion maps between towers, and a trace on each algebra.

We discard the traces, as they are non-combinatorial. Although inclusion

maps are specified by inclusion matrices and hence combinatorial, we discard the

inclusions between towers. The advantage is that there is no loss of generality to

restrict attention to the derived tower8. This means we will only construct Γ; one

can construct Γ′ by applying the results of Sections 3.4-3.5 to the dual tower.

Write Yi := N ′ ∩Mi. The remaining data consists of the algebras Yi and the

inclusion maps within the tower, i.e. Yi ⊂ Yi+1. Henceforth, when we refer to the

tower {Yi}i≥−1, we assume that it only contains this data.

This data can be described by graphs. Recall from the discussion following

Definition 1.5.10 that the (non-tracial) algebraic data of a finite-dimensional in-

clusion A ⊂ B is completely encoded by a pair (n⃗A,ΛB
A) or the pair (n⃗A, βB

A ),

where ΛB
A is an inclusion matrix and βB

A is a Bratteli diagram.

In fact, the entire tower can be encoded in a graph. Let the inclusion matrix of

Yi ⊂ Yi+1 be Λi+1
i and its Bratteli diagram be βi+1

i . Let Pi be the set of minimal

central projections (MCPs) of Yi, where Yi has the semisimple decomposition

Yi =
⊕

p∈Pi
Yip by Theorem 1.5.5. By definition, βi+1

i has left vertices Pi and

right vertices Pi+1, and Λi+1
i has row indices Pi and column indices Pi+1.

Compose the βi+1
i to form the full Bratteli diagram β. As Y−1 = N ′∩N = C1

is trivial, P−1 contains only one element; denote the corresponding vertex by ∗.
See Figure 3.1 for an example.

Definition 3.4.1. The full Bratteli diagram of the derived tower {Yi} = {N ′ ∩
Mi} is the graph9 β on the vertex set

⊔∞
i=−1 Pi that is formed as the union of the

graphs βi+1
i for i ≥ −1, with distinguished vertex ∗.

Proposition 3.4.2. The tower {Yi}i≥−1 (including the inclusion maps Yi ⊂ Yi+1)

is uniquely determined by β.

Proof. By the remarks given above, the data of Yi ⊂ Yi+1 is fully encoded by the

graphs {βi+1
i }i≥−1 and the initial dimension vector n⃗Y−1 . This initial vector is

always (1), so it suffices to show that the subgraphs βi+1
i can be recovered from

β. This amounts to showing that the partition of V (β) into {Pi}i≥−1 can be

recovered, which is the result of Lemma 3.4.3.

8The principal graphs Γ,Γ′ can be equipped with extra structure to retain some data about

the relationship between towers, but we do not consider this.
9As usual, meaning an undirected multigraph with unlabelled vertices.
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P−1 P0 P1 P2 P3

β2
1

∗

Figure 3.1: The first few levels of a possible β.

As we consider the vertices of β to be unlabelled, the partition V (β) =⊔∞
i=−1 Pi is not strictly included in the data of β, but it can be recovered.

Lemma 3.4.3. Pi ⊂ V (β) is the set of vertices of distance i+ 1 from ∗.

Proof. Pi only connects to adjacent levels Pi±1, and each sub-Bratteli diagram

βi+1
i has no isolated vertices due to Lemma 1.5.12.

We say that the set Pi is the ith ‘level’ of β, while the subgraph Γi
i−1 is the

ith ‘storey’10.

Proposition 3.4.2 shows that β encodes all data of {Yi}i≥−1. We can similarly

define β′ for the dual derived tower. Then the pair (β, β′) encodes the data of

the standard invariant, excluding the traces and inclusions between towers. This

is a major loss of data, but has the advantage of being represented by a graph.

Unfortunately, β is by definition an infinite graph. Fortunately, β contains

numerous redundancies. By removing these, we will form the principal graph Γ,

which contains equivalent data to β but can be finite.

Partial basic constructions in the derived tower

To give an analogy for what is meant by ‘redundancy’, examine the Jones tower

{Mi}i≥−1 at the level of triplets:

Mi−1 ⊂Mi ⊂Mi+1, with distinguished projection ei+1.

By definition, Mi+1 is the basic construction of Mi−1 ⊂ Mi. This means the

tower is highly redundant, as we can recover the tower from its lowest two levels

by taking the basic construction of N ⊂M , then M ⊂M1, and so on.

10Hence the lowest storey is the 0th, much like a building that houses a computer science

department.
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The derived tower {Yi}i≥−1 = {N ′ ∩ Mi}i≥−1 is not a Jones tower; it is

‘subtower’ of a Jones tower. Nonetheless, it can also be arranged into triplets

with distinguished projections.

Yi−1 ⊂ Yi ⊂ Yi+1, with distinguished projection ei+1. (3.7)

We would like to test if the derived tower has a similar kind of redundancy to the

Jones tower. To do, so we apply the basic construction to Yi−1 ⊂ Yi, and produce

the following triplet:

Yi−1 ⊂ Yi ⊂ ⟨Yi, eYi−1
⟩, with distinguished projection eYi−1

. (3.8)

We want to know if the basic construction triplet (3.8) is isomorphic to the

triplet (3.7) (meaning an isomorphism that preserves inclusions and distinguished

projections). In general, the answer is ‘no’. The key reason is that Yi+1 is too

large to be the basic construction of Yi−1 ⊂ Yi. It contains nontrivial ideals which

are mutually orthogonal with ei+1. This is data that is ‘independent’ from ei+1,

and cannot come from a basic construction.

However, we can remedy this by cutting out the offending ideal.

Definition 3.4.4. The central support of a projection p in a von Neumann

algebra A is the smallest projection zA(p) in Z(A) such that p ≤ zA(p), i.e.

zA(p) :=
∧

{q ∈ Z(A) : p ≤ q}

Definition 3.4.5. For i = −1, 0, let zi = 0 and Xi = 0. For i ≥ 1, let zi = zYi
(ei)

denote the central support of ei in Yi, and let Xi := Yizi be the ideal generated

by zi in Yi.

The ideal Yi(1 − zi) is the largest ideal in Yi which is ‘independent’ from ei.

To eliminate this ideal, we cut down the triplet (3.7) by zi, to obtain the triplet

Yizi+2 ⊂ Yi+1zi+2 ⊂ Xi+2. Remarkably, the cut-down triplet is isomorphic to the

basic construction triplet (3.8).

Theorem 3.4.6. Let i ≥ −1. The following triplets are isomorphic.

[Yi−1zi+1 ⊂ Yizi+1 ⊂ei+1 Xi+1] ∼=
[
Yi−1 ⊂ Yi ⊂eYi−1 ⟨Yi, eYi−1

⟩
]

(3.9)

The isomorphism preserves inclusions and distinguished projections. The restric-

tion of the isomorphism to Yizi+1 is the inverse of x 7→ xzi+1.
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A proof of this nontrivial fact is found in [Pop90, 2.1]. This is a remarkable

result which means that the derived tower is ‘partially redundant’.

To see this, decompose Yi+1 as Yi+1 = Xi+1 ⊕ Yi+1(1 − zi+1). Theorem 3.4.6

means Xi+1 is isomorphic to the basic construction of Yi−1 ⊂ Yi. I.e., while Yi+1

is not the basic construction of Yi−1 ⊂ Yi, it contains an isomorphic copy of it.

In particular, this means that the structure of Xi+1 can be completely inferred

from the previous two levels of the tower, Yi−1 and Yi. Conversely, nothing about

the complementary ideal Yi+1(1 − zi+1) is determined by lower levels. We call

Xi+1 the ‘old ideal’ or ‘old stuff’ of Yi+1, whereas Yi+1(1− zi+1) is ‘new’.

Recall that β fully encodes {Yi}i≥−1. We will construct Γ from β by discarding

‘old stuff’, and prove that no data is lost, i.e. Γ is equivalent to β. We then

obtain an invariant that also encodes {Yi}i≥−1, but improves on β by possibly

being finite.

3.5 The principal graph

The partition of Yi into ‘old’ and ‘new’ Yi = Xi ⊕ Yi(1− zi), induces a partition

of the vertices of β into ‘old and new’.

To show this, recall that the ith level of β is the set Pi of minimal central

projections of Yi. This set decomposes as Pi = {p ∈ Pi : p ∈ Xi} ⊔ {p ∈ Pi :

p ∈ Yi(1− zi)}. By Theorem 3.4.6, Xi is isomorphic to the basic construction of

Yi−2 ⊂ Yi−1, so Lemma 2.5.2 implies the set of MCPs of Xi is the set P̃i = {p̃ :

p ∈ Pi−2}, where p̃ ∈ Z(Xi) is unique such that pei = p̃ei.

Write P new
i for the set of MCPs of the new ideal Yi(1 − zi), so we can write

the partition as Pi = P̃i⊔P new
i . Vertices in P̃i are called old vertices, and vertices

in P new
i are called new vertices. We summarise this below: P new

i and P̃i have two

and three equivalent definitions, respectively:

P̃i = {p ∈ Pi : p ∈ Xi} = {p ∈ Pi : pzi = p} = {p̃ : p ∈ Pi−2} (3.10)

P new
i = {p ∈ Pi : p ∈ Yi(1− zi)} = {p ∈ Pi : pzi = 0} (3.11)

In β, draw each old vertex p̃ so it is the reflection of p ‘across’ the (i − 1)th

level, as in Figure 3.2. The principal graph Γ is constructed from β by discarding

the old vertices. See Figure 3.3 for a comparison of β and Γ.

Definition 3.5.1. The principal graph Γ of a subfactor N ⊂ M is the induced

subgraph of β on vertices
⊔

i≥−1 P
new
i , with distinguished vertex ∗.
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∗
P̃3

P new
3

P−1 P0 P1 P2 P3

Figure 3.2: Some vertices of β; edges omitted. Black vertices are old and blue

vertices are new.

P−1 P0 P1 P2 P3

∗

(a) Full Bratteli diagram β.

P new
−1 P new

0 P new
1 P new

2 P new
3

∗

(b) Principal graph Γ.

Figure 3.3: β and its associated Γ.

In fact, no data is lost in passing from β to Γ.

Theorem 3.5.2. If two II1 subfactors have the same principal graph Γ, then they

have the same full Bratteli diagram β.

(The proof concludes after Theorem 3.5.5.) The task at hand is to show that

vertices and edges not belonging to Γ represent redundant data. We write that

an edge is ‘old-old’ if it has old left endpoint and old right endpoint. Similarly,

we write ‘old-new’, etc. As Γ is induced by new vertices, it contains exactly the

new-new edges. We’ll show that the three other types of edge are redundant data.

First, we show that new-old and old-old edges are redundant. Let β̃i
i−1 be the

induced subgraph of βi
i−1 on Pi−1⊔ P̃i. That is, β̃

i
i−1 contains exactly the edges of

βi
i−1 whose right endpoint is old – namely, new-old and old-old edges. See Figure

3.4; observe that the right endpoints of β̃i
i−1 are black (old).

Observe in Figure 3.4 that βi+1
i is a mirror image of the preceding storey.

Proposition 3.5.3 states that this is a general rule.
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β̃1
0

β̃3
2

P−1 P0 P1 P2 P3

∗

Figure 3.4: β from Figure 3.3 with β̃1
0 and β̃3

2 highlighted.

Proposition 3.5.3. For i ≥ 1, β̃i
i−1 is the reflection of βi−1

i−2 across Pi−1.

Proof. The left vertices of β̃i
i−1 are Pi−1, i.e. the MCPs of Yi−1. By Theorem

3.4.6, Yi−1
∼= Yi−1zi, so Pi−1 is also identified with the set of MCPs of Yi−1zi. The

right vertices of β̃i
i−1 are P̃i, which are the MCPs of Xi = Yizi, by (3.10).

Because β̃i
i−1 is an induced subgraph of a Bratteli diagram, it follows that β̃i

i−1

is itself the Bratteli diagram of the inclusion Yi−1zi ⊂ Yizi.
11

It follows that β̃i
i−1 has biadjacency matrix ΛYizi

Yi−1zi
= ΛXi

Yi−1zi
. To show that

β̃i
i−1 is the reflection of βi−1

i−2 , it suffices to show that their biadjacency matrices

are transposes of one another. The latter has biadjacency matrix Λ
Yi−1

Yi−2
, by the

definition made above Definition 3.4.1.

By Theorem 3.4.6, Yi−2zi ⊂ Yi−1zi ⊂ Xi is a basic construction triplet. Then,

by Lemma 2.5.3,

ΛXi
Yi−1zi

= (Λ
Yi−1zi
Yi−2zi

)T = (Λ
Yi−1

Yi−2
)T

where the second equality holds because x 7→ xzi is an isomorphism of Yi−2 ⊂ Yi−1

onto Yi−2zi ⊂ Yi−1zi (Theorem 3.4.6).

Therefore, the subgraph β̃i
i−1 is redundant data, because it is determined by

the previous (i.e. the (i−1)th) storey of β. As remarked above Proposition 3.5.3,

β̃i
i−1 consists exactly of new-old and old-old edges. Hence, edges of these types

are redundant. In Figure 3.5, we draw all redundant edges as dashed lines, and

non-redundant (meaningful) edges as solid.

11We could show this with more care, but it is a cumbersome finite-dimensional algebraic

argument that provides little intuition.
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We want the principal graph Γ to encode all meaningful information, but there

is an issue: Γ, by definition, consists of new-new edges, but the meaningful edges

may include old-new edges! See the red edge in Figure 3.5.

P−1 P0 P1 P2 P3

∗

Figure 3.5: β, with redundant edges shown as dashed lines.

In fact, this is no problem at all.

Proposition 3.5.4. There are no old-new edges in β.

Proof. There are no old vertices in the (−1)st and 0th levels, so it suffices to

prove that there are no edges from P̃i−1 to P new
i when i ≥ 2.

Let p̃ ∈ P̃i−1 and q ∈ P new
i . By definition of Bratteli diagrams (Definition

1.5.10, the number of edges from p̃ to q represents the number of copies of Yi−1p̃

that are ‘embedded inside’ Yiq. To show this is zero, it suffices to show that

p̃q = 0.

By (3.10), (3.11), p̃ ≤ zi−1 and q ≤ 1 − zi. So it clearly suffices to show

zi−1(1− zi) = 0. As zi−1 ∈ Xi−1, we’ll prove the more general fact that Xi−1(1−
zi) = 0.

Because Xi−1 is the basic construction of Yi−3 ⊂ Yi−2, Lemma 2.2.11 implies

that Yi−2 + spanYi−2ei−1Yi−2 is dense in Xi−1. It is a nontrivial fact [Pop90, 2.1]

[PP86, 1.3] that this can be strengthened: spanYi−2ei−1Yi−2 is dense in Xi−1.

Since (1− zi) ∈ Z(Yi), it commutes with Yi−2, so it suffices to show ei−1(1−
zi) = 0. Using the Jones relations (Theorem 2.6.4),

ei−1(1− zi) = [M : N ]ei−1eiei−1(1− zi)

= [M : N ]ei−1ei(1− zi)ei−1 (3.12)

As zi is the central support of ei (Definition 3.4.5), in particular ei ≤ zi and so

eizi = ei. Hence, we conclude from (3.12) that ei−1(1 − zi) = 0. In particular,

this proves that p̃q = 0, and so there are no edges from P̃i−1 to P new
i .
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Proposition 3.5.4 implies that edges in βi
i−1 are either old-old, new-old, or

new-new. By definition, the former two types are edges of β̃i
i−1. By definition,

the latter are edges of Γi
i−1. The following is then immediate.

Theorem 3.5.5. The ith storey12 of β is the edge-disjoint union of a reflection

of the (i− 1)th storey of β, and the ith storey of Γ.

Observe in Figure 3.6 that each storey has a dashed part which reflects the

previous storey, and a blue part.

P−1 P0 P1 P2 P3

∗

Figure 3.6: Blue edges/vertices are in Γ. Dashed edges are in β but not Γ.

We can therefore recover β from Γ by successively reflecting each storey, as

shown in Figure 3.7. Hence Γ is a faithful invariant of β, proving Theorem 3.5.2.

This means that Γ fully encodes the combinatorial (i.e., non-tracial) data of the

tower {Yn}n≥−1 = {N ′ ∩Mn}n≥−1. Unlike β, Γ is the ‘minimal’ encoding, as all

redundancies of β are removed. This is extremely important: while β is never

finite, Γ can be finite, unlocking far more graph-theoretic techniques.

−→ −→ −→ · · ·

∗ ∗ ∗

Figure 3.7: Reconstructing β from Γ.

Also, this makes Γ a good indicator of tractability for a subfactor. A II1

subfactor N ⊂M with finite principal graphs is extremely well-behaved, because

its derived towers truly contain a finite amount of information. Therefore, we are

very interested in a notion of size for Γ.

12Recall that the ith storey is the subgraph between the (i− 1)th level and the ith level.
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3.6 The depth of a principal graph

A natural notion of size for Γ is its depth. We describe a method for computing it,

and hence determining when Γ is finite. We then prove one of the most important

results about finite principal graphs: that the index [M : N ] can be recovered

from the principal graph of N ⊂ M , as long as the graph is finite. This will

conclude our long quest to find an invariant that generalises the index.

Definition 3.6.1. depth(Γ) is, equivalently, the maximal distance of any vertex

from ∗ in Γ, or the smallest d ∈ {0, 1, 2, . . .} ∪ {∞} such that the dth level of Γ

is unoccupied.

Recall that the ith level of Γ is P new
i . The two definitions are equivalent by

the following lemma, which is similar to an earlier result for β (Lemma 3.4.3).

Lemma 3.6.2. P new
i ⊂ V (Γ) is the set of vertices of distance i+ 1 from ∗.

Proof. Let p ∈ P new
i . Since Γ is a subgraph of β and P new

i ⊂ Pi, Lemma 3.4.3

implies that there exists a path from ∗ to p in β of length i + 1. Since ∗ and p

are new vertices, either every edge in this path is new-new, in which case it is a

path in Γ, or else the path contains at least one old-new edge. By Proposition

3.5.4, such edges don’t exist in β. Therefore, d(p, ∗) = i+ 1 in Γ.

Computing depth(Γ) is clearly equivalent to the task of determining if an

arbitrary level of Γ is unoccupied, so we introduce a technique for the latter.

Recall that Λi
i−1 is the biadjacency matrix of βi

i−1, the Bratteli diagram of Yi−1 ⊂
Yi.

Theorem 3.6.3. (Termination condition for Γ)

If i ≥ 0, the (i+1)th level of Γ is unoccupied if and only if ∥Λi
i−1∥2 = [M : N ].

Theorem 3.6.3 is a miracle – a priori, there is no clear reason to suggest that

Γ should be related to the index [M : N ] at all! The key link between Γ and the

index is given by the following lemma. (The proof of Theorem 3.6.3 appears after

the proof of this lemma.)

Lemma 3.6.4. ∥Λi
i−1∥2 ≤ [M : N ] for all i ≥ 0.

Proof. This proof is adapted from [GHJ89, 4.6.3(v)]. Suppose to the contrary that

there exists ϵ > 0 and i ≥ 0 such that ∥Λi
i−1∥ > (1− ϵ)−1[M : N ]. We will derive

a contradiction of Lemma 3.2.1, which states dimYj = dim(N ′ ∩Mj) ≤ [M : N ].
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Let n⃗(j) be the dimension vector of Yj. By definition, for each entry nj
p of n⃗

(j), Yj

has a Mnj
p
(C) summand, so its dimension is given by dimYj = ∥n⃗(j)∥2.

Let p ≥ 0, and we look 2p storeys above the (i−1)th level. By Lemma 1.5.11,

n⃗(j) = n⃗(j−1)Λj
j−1. Repeatedly applying this identity,

dimYi−1+2p = ∥n⃗(i−1+2p)∥2 = ∥n⃗(i−1)Λi
i−1Λ

i+1
i · · ·Λi−1+2p

i−2+2p∥2 (3.13)

We determine what the inclusion matrices Λj+1
j look like. By Theorem 3.5.5,

βj+1
j is an edge-disjoint union of β̃j+1

j and Γj+1
j . Because the subgraphs β̃j+1

j and

Γj+1
j are bipartite and their right-vertex sets are disjoint, the biadjacency matrix

Λj+1
j of βj+1

j must be (up to permutation) formed by horizontally concatenating

the subgraphs’ biadjacency matrices. β̃j+1
j is the reflection of βi

i−1, so it has

biadjacency matrix (Λi
i−1)

T . Let Ξ be the biadjacency matrix of Γj+1
j . Hence,

Λj+1
j =

(
(Λj

j−1)
T Ξ

)
. (3.14)

We can apply the same identity to Λj
j−1, then Λj

j−2, and so on. Hence, whenever

j ≥ i, Λj+1
j contains Λi

i−1 as a submatrix (a corner) if j − i is odd, and otherwise

it contains (Λi
i−1)

T as a corner.

Since inclusion matrices have nonnegative entries, replacing every matrix in

(3.13) with a corner does not cause the norm to increase. There are 2p matrices

in (3.13), so we get

dimYi−1+2p ≥ ∥n⃗(i−1)
(
Λi

i−1(Λ
i
i−1)

T
)p ∥2 = ∥

(
Λi

i−1(Λ
i
i−1)

T
)p
n⃗(i−1)∥2 (3.15)

Write Λ for Λi
i−1. Because Λ is an inclusion matrix, the reasoning in the proof

of Theorem 2.5.11 shows that ΛΛT is the adjacency matrix of some nonempty

connected graph. Hence the Perron-Frobenius theorem (Theorem 2.5.10) implies

ΛΛT has an eigenvector ν⃗ with strictly positive entries and eigenvalue ∥Λ∥2. Scale
ν⃗ so it is entry-wise smaller than n⃗(i). Then, by comparing to (3.15),

dimYi−1+2p ≥ ∥
(
ΛΛT

)p
ν⃗∥2 = ∥Λ∥4p∥ν∥2

(dimYi−1+2p)
1/(i+2p)

∥Λ∥2 ≥
( ∥ν∥2
∥Λ∥2i

)1/(i+2p)

The right side converges to 1 as p → ∞. For some k = i − 1 + 2p sufficiently

large, we obtain dimYk−1 ≥ (1−ϵ)k∥Λ∥2k > [M : N ]k, where the second inequality

follows by the assumption we made at the start.

But by definition, Yk−1 = N ′ ∩Mk−1, and Lemma 3.2.1 bounds its dimension

by dimYk−1 ≤ [Mk : N ] = [Mk : Mk−1] · · · [M1 : M ][M : N ] = [M : N ]k, so we

have a contradiction.
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Lemma 3.6.4 is remarkable! A priori, the index is a non-discrete measure of

size, yet it controls the size and complexity of a combinatorial object. In light

of this lemma, Theorem 3.6.3 simply states that Γ terminates when ∥Λi
i−1∥2 has

reached its maximal value. We can now prove this.

Proof. (Theorem 3.6.3)

⇐= : Suppose, to gain a contradiction, that ∥Λi
i−1∥2 = [M : N ] but that

level i+ 1 of Γ is occupied, i.e. P̃ new
i+1 ̸= ∅. Because each level must be connected

to ∗ (Lemma 3.6.2), the level below any occupied level is occupied, so P̃ new
i ̸= ∅.

Hence, Γi+1
i is a nonempty subgraph of Γ.

From (3.14), if Ξ denotes the biadjacency matrix of Γi+1
i , then, up to permu-

tation, Λi+1
i =

(
(Λi

i−1)
T Ξ

)
. As Γi+1

i is nonempty, Ξ is a nontrivial matrix of

nonnegative integers, so it must be that
∥∥Λi+1

i

∥∥2 > ∥∥Λi
i−1

∥∥2 = [M : N ], contra-

dicting Lemma 3.6.4.

=⇒ : Suppose the (i + 1)th level of Γ is unoccupied, i.e. P new
i+1 = ∅. By

definition (see (3.11)), P new
i+1 = {p ∈ Pi+1 : p ≤ (1 − zi+1)}. This means 1 − zi+1

has no minimal subprojections, which implies 1− zi+1 = 0.

By Theorem 3.4.6, zi+1 = 1 implies Xi+1 = Yi+1, and hence Yi−1 ⊂ Yi ⊂ei+1

Yi+1 is isomorphic to a basic construction triplet. As Yi+1 ⊂ Mi+1, where Mi+1

is a II1 factor, we can restrict the trace of Mi+1 to Yi+1. Because the Jones

tower {Mi}i≥−1 has the Markov property with modulus [M : N ]−1, tr(xei+1) =

[M : N ]−1 tr(x) for all x ∈ Mi, in particular all x ∈ Yi. Hence, the triplet

Yi−1 ⊂ Yi ⊂ei+1 Yi+1 itself satisfies the Markov relation with modulus [M : N ]−1.

But recall from Proposition 2.5.9 that the Frobenius property (Definition

2.5.7) is a good tower-building property – in particular, a recoverably tower-

building property (Definition 2.3.6). Then, because Yi−1 ⊂ Yi ⊂ei+1 Yi+1 is

Markov, it follows that Yi−1 ⊂ Yi is Frobenius with parameter [M : N ]. That is,

if τ⃗ is the trace vector of tr |Yi−1
, then

(Λi
i−1)

TΛi
i−1τ⃗ = [M : N ]τ⃗ .

Hence
∥∥(Λi

i−1)
∥∥2 ≥ [M : N ]. By Lemma (3.6.4), the reverse inequality holds, so

we conclude that
∥∥(Λi

i−1)
∥∥2 = [M : N ] whenever level i + 1 is unoccupied. This

proves Theorem 3.6.3.

Theorem 3.6.3 provides a method for computing depth(Γ), as long as it is

finite: one computes the sequence {ΛYi
i−1}i≥0 until it stabilises to a 2-periodic se-

quence (Λd
d−1), (Λ

d
d−1)

T , . . . Then one simply reads off the level where stabilisation

occurs. This is summarised below:
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Corollary 3.6.5. depth(Γ) = 1 + min{i ≥ 0 : ∥Λi
i−1∥2 = [M : N ]}.

When depth(Γ) <∞, much more can be said about Γ. For example, because

the 2-periodic sequence of biadjacency matrices alternates between a matrix and

its transpose, the sequence of Bratteli diagrams {βi
i−1} stabilises to a constant

sequence (as a matrix and its transpose represent the same bipartite graph up to

isomorphism). It is a remarkable fact that it stabilises to the principal graph.

This means, despite the fact that Γ is a priori defined as a subgraph of the

infinite graph Γ, we can compute it by calculating only a finite sequence of graphs

(as long as Γ is actually finite).

Theorem 3.6.6. If depth(Γ) = d < ∞, then the Bratteli diagram of Yd−1 ⊂ Yd

is isomorphic to Γ.

Proof. Write G = βd
d−1 for the Bratteli diagram of Yd−1 ⊂ Yd.

We define an equivalence relation ∼ on
⊔d

i=1 Pi, generated by the equivalence13

of p ∈ Pi−2 with p̃ ∈ P̃i ⊂ Pi for all 1 ≤ i ≤ d. Then, it’s clear that each

equivalence class C consists of a single new vertex in addition to old vertices at

successively higher levels (in steps of two), i.e. C = {pj, pj+2, pj+4, . . . , pk}, where
k ∈ {d, d− 1}, pj ∈ P new

j , and pi ∈ P̃i for j + 2 ≤ i ≤ k.

V (G) = Pd−1 ⊔ Pd, so we define φ : V (G) → V (Γ) by mapping p ∈ V (G) to

the unique new vertex in its equivalence class. This is easily seen to be bijective

as each equivalence class contains only one vertex in Pd−1 ⊔ Pd and every new

vertex in V (Γ) appears in some equivalence class. To see that this map is edge-

preserving, suppose pd−1, qd are a pair of vertices in Pd−1, Pd connected by at

least one edge (the case where they are disconnected is straightforward). Suppose

φ(pd−1) and φ(qd) are at the ith and jth levels, respectively, assuming i < j, and

we write φ(pd−1) = pi and φ(qd) = qj.

Then, write the vertices in the equivalence classes of p and q in ascending

order of level as follows: pi, pi+2, . . . , pj−1, qj, pj+1, qj+2, . . . , pd−1, qd.

Each of these is old besides pi and qj. An old-old edge is a reflection of an edge

at a lower storey by Proposition 3.5.3, so the number of edges from pj−1 to qj is

the same as between qj and pj+1, and so on. In particular, there must be at least

one edge from pj−1 to qj. Since old-new edges don’t exist by Proposition 3.5.4,

pj−1 must be new, so j − 1 = i since each equivalence class has exactly one new

representative. Then the edge number between φ(pd−1) = pj−1 and φ(qd) = qj is

the same as between pd−1 and qd, so φ is an edge-preserving bijection.

13See (3.10).
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Assuming Γ is finite, Theorem 3.6.6 provides a way to compute Γ in finite

time: construct the sequence {βi
i−1}i≥0, and stop when it stabilises. In practice,

one can often use subtler graph-theoretic arguments to compute Γ, which we do

in Section 3.8. Arguably, the most important outcome of Theorem 3.6.6 is not

the algorithm, but the following:

Corollary 3.6.7. If depth(Γ) <∞, then ∥Γ∥2 = [M : N ].

Proof. Let d = depth(Γ). The graph norm ∥Γ∥ is just the norm of its adjacency

matrix. By Theorem 3.6.6, Γ ∼= βd
d−1, which has biadjacency matrix Λd

d−1, but

this has the same norm as the adjacency matrix. By the termination condition

(Theorem 3.6.3), ∥Λd
d−1∥2 = [M : N ], and it follows that ∥Γ∥2 = [M : N ].

Corollary 3.6.7 is immensely important. It shows, in the finite-depth case, the

principal graph generalises the index. Therefore, the three major invariants of

II1 subfactor theory fit neatly into an ordering by strength:

Standard invariant ≥ Principal graphs ≥ Index

The unifying idea of these three invariants is that they represent different amounts

of information about the Jones tower. The standard invariant stores only the

Jones tower’s finite-dimensional data, the principal stores only finite-dimensional

combinatorial data, and the index stores only the Markov modulus.

3.7 The principal graph as a finer invariant

The principal graph is a vital object, as it allows the considerable power of com-

binatorics and graph theory to apply to subfactor theory. Consider Kronecker’s

theorem [GHJ89, 1.1.1] which states that, if Λ is a nonzero matrix of integers,

then ∥Λ∥2 ∈ {4 cos2(π/n) : n = 3, 4, 5, . . .}∪[4,∞). This should look familiar! We

use this fact to give a very short alternative proof of half of the index theorem.

Theorem 3.7.1. (Jones index theorem - constraint on the index)

If N ⊂M is a II1 subfactor, [M : N ] ∈ {4 cos2(π/n) : n = 3, 4, 5, . . .}∪[4,∞].

Proof. Assume [N :M ] < 4. We’ll show that N ⊂M is a finite depth subfactor.

Supposing N ⊂M has infinite depth, there are vertices in Γ at level i+ 1 for all

i ≥ 0. By an argument near the start of the proof of Theorem 3.6.3,

4 > [M : N ] ≥
∥∥Λi+1

i

∥∥2 > ∥∥Λi
i−1

∥∥2 for all i ≥ 0. (3.16)
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But, by Kronecker’s theorem, ∥Λi−1
i ∥2 ∈ {4 cos2(π/n) : n = 3, 4, 5, . . .}. This set

has a single limit point at 4, so the increasing sequence of (3.16) can’t exist.

Therefore, by contradiction, N ⊂ M has finite depth and hence Γ is a finite

graph. But Γ is a connected graph with ∥Γ∥2 = [M : N ] ≤ 4, and so again by

Kronecker’s theorem [M : N ] ∈ {4 cos2(π/n) : n = 3, 4, 5, . . .}.

This proof appears in [GHJ89, 4.6.6] six years after Jones’s original proof

[Jon83, 4.3.1]. They share an approach: from the Jones tower, one extracts an

invariant which strictly generalises the index (a Temperley-Lieb algebra in [Jon83]

and a principal graph in [GHJ89]). The constraint on the index follows from a

constraint on the stronger object. However, the principal graph lets us say more.

Corollary 3.7.2. (Constraint on principal graphs)

If N ⊂M is a II1 subfactor with index [M : N ] < 4, then its principal graph

Γ is a Coxeter diagram of type A, D, or E.

An : • • . . . • E6 : • • • • •

Dn : • • . . . • • •

• • E7 : • • • • • •

E8 : • • • • • • •

Figure 3.8: The A,D,E Coxeter diagrams. (Diagram by Isabel Longbottom.)

Proof. By the argument from the proof above, Γ has finite depth and so by

Corollary 3.6.7, we have ∥Γ∥2 = [M : N ] < 4. It is known that the nonempty

finite connected graphs of norm-squared strictly less than 4 are Coxeter diagrams

of type A, D, or E. (See Table 3.1.)

Coxeter diagram An Dn E6 E7 E8

Norm-squared 4 cos2
(

π
n+1

)
4 cos2

(
π

2n−2

)
4 cos2

(
π
12

)
4 cos2

(
π
18

)
4 cos2

(
π
30

)
Table 3.1: The squared norms of A, D, E Coxeter diagrams [GHJ89, 1.4.3].

The earliest references where the result of Corollary 3.7.2 appears include

[Ocn88, p139] and [GHJ89, 4.6.6]. Efforts by various authors over the following

years identified which of the A, D, E Coxeter diagrams are realised by subfactors,

and how many distinct standard invariants give rise to each graph.
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Coxeter diagram An D2n+1 D2n E6 E7 E8

Number of standard invariants 1 0 1 2 0 2

Table 3.2: Number of subfactor standard invariants realising the Coxeter dia-

grams of type A, D, and E [JMS14] [Ocn88] [GHJ89] [Izu91] [Kaw95].

Theorem 3.6.6 states that a finite-depth principal graph recovers the index,

but Table 3.2 shows by example that the principal graph is strictly finer than

the index – e.g. a subfactor with A11 principal graph and a subfactor with E6

principal graph both have index 4 cos2(π/12) = 2 +
√
3.

To bring this thesis to a denouement, we will verify part of Table 3.2: we will

show that the Jones subfactor J (n) ⊂ J has type A principal graph.

3.8 Principal graph of the Jones subfactor

Theorem 3.8.1. If n ≥ 3, the principal graph of J (n) ⊂ J is An−1.

This result appears in [GHJ89, 4.7.b].

Proof. Let the principal graph be Γ. Since [J : J (n)] = 4 cos2(π/n) < 4, Corollary

3.7.2 constrains Γ to be type A, D, or E. To rule out D and E it suffices to

show that Γ has no branching, or equivalently that there is at most one vertex in

each level of Γ. By definition (see (3.11)) this is equivalent to the ideal Yi(1− zi)

containing at most one minimal central projection for all i ≥ −1.

By Theorem 3.3.1, the derived tower {Yi}i≥−1 = {(J (n))′ ∩ Ji}i≥−1 is isomor-

phic to {[1 : i]}i≥−1 by a map sending ei 7→ εi, where the εi satisfy Jones relations.

Hence we identify Yi with [1 : i] and zi with the the central support of εi in Yi.

(Recall Definition 3.4.5.) We claim that

zi =
i∨

j=1

εj = ε1 ∨ ε2 ∨ . . . ∨ εi. (3.17)

As
∨i

j=1 εi commutes with ε1, . . . , εi, it is central in Yi = [1 : i]. By Definition

3.4.4, to prove equality, we must show that
∨i

j=1 εi is minimal among central

projections that dominate εi.

If z′ ∈ Z(Yi) is another central projection such that εi ≤ z′, then z′εi = εi =

εiz
′. To show

∨i
j=1 εi ≤ z′, it suffices to show εj ≤ z′ for j = 1, . . . , i. The

j = i case is true by assumption. We induct on j, so suppose εj+1 ≤ z′ (and so
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z′εj+1 = εj+1). Using the Jones relations,

z′εj = τ−1z′(εjεj+1εj) = τ−1εj(z
′εj+1)εj = τ−1(εjεj+1εj) = εj.

z′εj = εj implies εj ≤ z′, so by induction
∨i

j=1 εi ≤ z′, proving (3.17).

Armed with this result, we can return to our initial aim: we will show, if

1 − zi ̸= 0, then Yi(1 − zi) has exactly one minimal central projection. We can

show something stronger: that the only projections in Yi(1− zi) are 0 and 1− zi.

Suppose p ∈ Yi(1− zi) ⊂ Yi is a projection. Then p ≤ 1− zi and so p(1− zi) = p.

As Yi = [1 : i], p is a linear combination of words in ε1, . . . , εi.

By (3.17), εj(1−zi) = 0 for j = 1, . . . , i. Hence, right-multiplying p by (1−zi)
eliminates every term in p except for the empty word 1. If 1 doesn’t appear in p,

then p = p(1− zi) = 0. If 1 does appear, then p = p(1− zi) = 1− zi.

It follows that Yi(1 − zi) has either one or zero nontrivial projections. In

particular, this means that the ith level of Γ, namely P new
i (see (3.11)), contains

one or zero vertices. Hence Γ cannot branch.

It follows from Corollary 3.7.2 that Γ is type A. By Corollary 3.6.7, ∥Γ∥2 =

[J : J (n)] = 4 cos2(π/n). The type A Coxeter diagram with this norm-squared

value is An−1, by Table 3.1 [GHJ89, 1.4.3].

We now know all three major invariants for the Jones subfactor J (n) ⊂ J .

Standard invariant Principal graph Index

{[2 : n]}n≥0, {[1 : n]}n≥−1 An−1 4 cos2(π/n)

Table 3.3: The three major invariants of J (n) ⊂ J .

This shows that the Jones subfactors J (n) ⊂ J are the simplest possible sub-

factors. They occupy the smallest allowable index values, and their principal

graphs are also the simplest possible, as they are linear.

This also reveals the limitations in their construction. To obtain the other

principal graphs in Table 3.2 of types other than A, one must resort to more

sophisticated constructions [JMS14].

Today, the subfactor classification effort has progressed beyond index 4; to

our knowledge, standard invariants are currently classified up to index 5 + 1/4

[AMP15] [PT12]. Although the techniques presently used are far more sophisti-

cated than those originally introduced by Jones and described in this thesis, their

genesis can still be traced, ultimately, back to one groundbreaking paper: ‘Index

for Subfactors’ [Jon83].
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