

A unitary VOA for every conformal net

James Tener
Australian National University

based on joint work with André Henriques [arXiv:2507.20735]

ANZAMP Annual Meeting
11 February 2026

Axiomatic quantum field theory

"In theoretical physics, since the time of Newton, the axiomatic method has served not only for the systematization of results previously obtained, but also in the discovery of new results."

— N. N. Bogoliubov, A. A. Logunov, I. T. Todorov, *Introduction to Axiomatic Quantum Field theory* (1975)

Axiomatic quantum field theory

"In theoretical physics, since the time of Newton, the axiomatic method has served not only for the systematization of results previously obtained, but also in the discovery of new results."

— N. N. Bogoliubov, A. A. Logunov, I. T. Todorov, *Introduction to Axiomatic Quantum Field theory* (1975)

- A QFT comes with a lot of data: fields, correlation functions, observables, OPEs, scattering matrix, etc.
- The goal is to provide axioms for a *subset* of the data in such a way that:
 - 1) it is possible to recover the remaining data
 - 2) expected behavior can be rigorously derived
 - 3) all physical models satisfy the axioms
- This has proven to be very challenging.

Vertex operator algebras (VOAs)

- The axiomatic approach has been particularly successful with (2d, chiral) conformal field theories.
- These theories may be axiomatized as vertex operator algebras

Vertex operator algebras (VOAs)

- The axiomatic approach has been particularly successful with (2d, chiral) conformal field theories.
- These theories may be axiomatized as vertex operator algebras

$$V = \bigoplus_{d=0}^{\infty} V(d).$$

- The key data of a VOA is a ‘state-field correspondence’:

$$Y(v, z) = \sum_{n \in \mathbb{Z}} v_n z^{-n-d}, \quad v_n : V \rightarrow V.$$

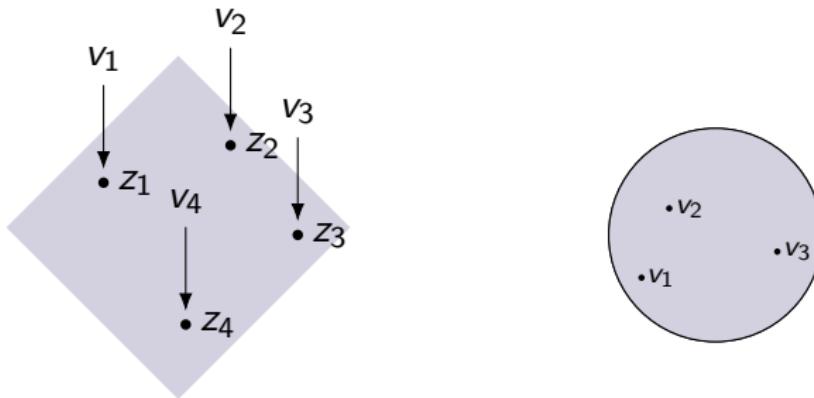
- There is a vacuum vector $\Omega \in V(0)$, and we have
 $v = \lim_{z \rightarrow 0} Y(v, z)\Omega$.
- There is a vector $\nu \in V(2)$ whose modes give a representation of the Virasoro algebra $Y(\nu, z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$

- Given $v_1, \dots, v_n \in V$ and distinct $z_1, \dots, z_n \in \mathbb{C}$ with local coordinates, we have a vector

$$|v_1(z_1) \cdots v_n(z_n)\rangle \in \hat{V} := \prod_{d=0}^{\infty} V(d).$$

- This is holomorphic in the z_j , and when $|z_1| > |z_2| \cdots > |z_n|$

$$|v_1(z_1) \cdots v_n(z_n)\rangle = Y(v_1, z_1) \cdots Y(v_n, z_n) \Omega.$$



- A *unitary* VOA has a compatible inner product, and

$$|z_j| < 1 \implies |v_1(z_1) \cdots v_n(z_n)\rangle \in H := \bigoplus^{\ell^2} V(d).$$

VOAs and the Wightman axioms on the circle

- The key axiom that the fields $Y(v, z)$ satisfy is *locality*.
- Locality is easiest to formulate in terms of smeared fields

$$Y(v, f) = \oint_{S^1} f(z) Y(v, z) \frac{dz}{2\pi\imath z^{1-d}}, \quad f \in C^\infty(S^1).$$

which are linear maps $Y(v, f) : \mathcal{D} \rightarrow \mathcal{D}$ for a certain $\mathcal{D} \supset V$.

- The smeared fields are operator-valued distributions.
- Locality says that $Y(v_1, f_1)$ and $Y(v_2, f_2)$ commute when f_1 and f_2 have disjoint support.

VOAs and the Wightman axioms on the circle

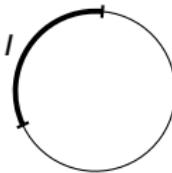
- The key axiom that the fields $Y(v, z)$ satisfy is *locality*.
- Locality is easiest to formulate in terms of smeared fields

$$Y(v, f) = \oint_{S^1} f(z) Y(v, z) \frac{dz}{2\pi\imath z^{1-d}}, \quad f \in C^\infty(S^1).$$

which are linear maps $Y(v, f) : \mathcal{D} \rightarrow \mathcal{D}$ for a certain $\mathcal{D} \supset V$.

- The smeared fields are operator-valued distributions.
- Locality says that $Y(v_1, f_1)$ and $Y(v_2, f_2)$ commute when f_1 and f_2 have disjoint support.
- The link between VOA axioms and the Wightman axioms has been recognized for a long time.
- In [Carpi-Raymond-Tanimoto-T, '25], we showed that they are exactly equivalent (even for non-unitary theories!).

Algebraic CFT



- The Haag-Kastler axioms for a **unitary** QFT describe *nets of algebras of observables*. In the context of 2d chiral CFT, these are called *conformal nets*.
- A conformal net assigns (von Neumann) algebras on a Hilbert space H to intervals of S^1 :

$$I \subset S^1 \quad \mapsto \quad \mathcal{A}(I) \subset B(H)$$

- Locality says that $\mathcal{A}(I)$ and $\mathcal{A}(J)$ commute when $I \cap J = \emptyset$.
- There is also a vacuum vector Ω and a unitary representation of the Virasoro algebra L_n .

The VOA \leftrightarrow conformal net correspondence

- A unitary VOA V should correspond to a conformal net \mathcal{A}_V :

$$\mathcal{A}_V(I) = vNA(\{Y(v, f) \mid v \in V, \text{supp}(f) \subset I\}).$$

- The expected correspondence was carefully described in
[Carpi-Kawahigashi-Longo-Weiner '18]

The Question:

"The question as to whether the Wightman axioms are equivalent to a theory formulated in terms of a net of algebras of bounded operators has been the subject of extensive discussions. . . One may ask under what conditions the construction of von Neumann algebras. . . leads to a net respecting the causal structure. . . Conversely one may ask whether, given a net of algebras of bounded operators, one can define fields. . . "

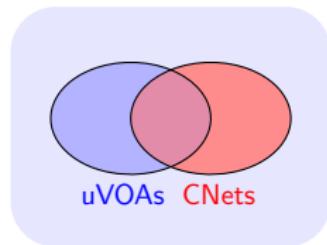
— R. Haag, *Local Quantum Physics* (1992)

- Does every unitary VOA produce a conformal net?
- Does every conformal net come from a unitary VOA?

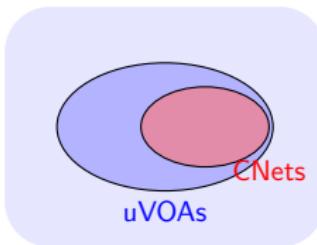
Main Result

Theorem (Henriques-T '25)

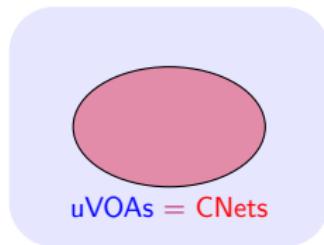
Every conformal net comes from a unitary VOA.



The situation before



The situation now



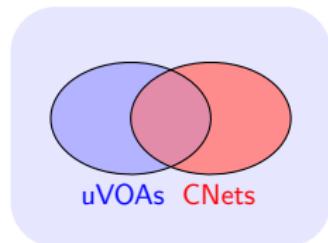
Conjecturally

The VOA $V \subset H$ lives on the space of *finite-energy vectors* for L_0 .

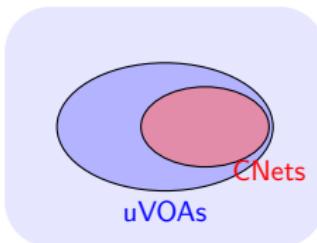
Main Result

Theorem (Henriques-T '25)

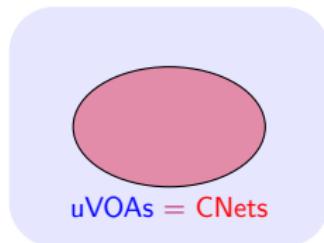
Every conformal net comes from a unitary VOA.



The situation before



The situation now



Conjecturally

The VOA $V \subset H$ lives on the space of *finite-energy vectors* for L_0 .

We also show that:

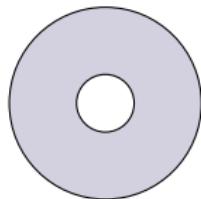
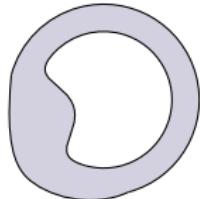
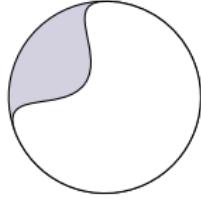
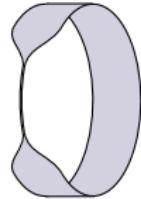
- every representation of a CN comes from a VOA module.
- a number of constructions of CNs from VOAs are equivalent
- there are many conditions equivalent to a VOA producing a CN

Interlude: the semigroup of annuli

- The Virasoro algebra L_n is a central extension of the complexification of the Lie algebra of $\text{Diff}(S^1)$.
- Goodman-Wallach '85: Every unitary representation of Virasoro exponentiates to a projective unitary representation of $\text{Diff}(S^1)$.

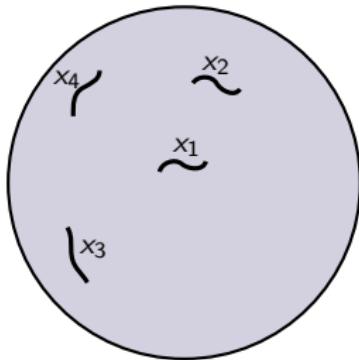
Interlude: the semigroup of annuli

- The Virasoro algebra L_n is a central extension of the complexification of the Lie algebra of $\text{Diff}(S^1)$.
- Goodman-Wallach '85: Every unitary representation of Virasoro exponentiates to a projective unitary representation of $\text{Diff}(S^1)$.
- There is no group which “complexifies” $\text{Diff}(S^1)$, but there is a semigroup.
- The Segal-Neretin semigroup of annuli consists of certain complex ‘manifolds’ with boundary parametrized by S^1 . We allow ‘partially thin’ annuli.
- Henriques-T: Every positive energy representation of Virasoro exponentiates to a holomorphic representation of this semigroup.



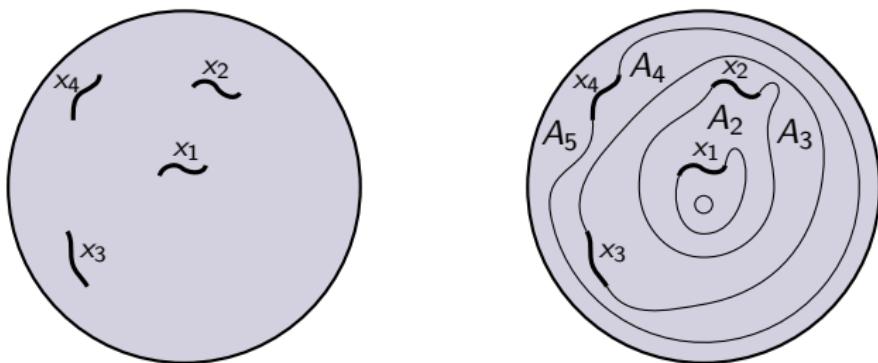
Worm insertions

- We want to construct a vector in H corresponding to vectors v_j inserted at points z_j in the unit disc (with local coordinates)
- We first construct vectors in H corresponding to algebra elements $x_j \in \mathcal{A}(I_j)$ inserted at intervals in the unit disc (parametrized by I_j)



Worm insertions

- We want to construct a vector in H corresponding to vectors v_j inserted at points z_j in the unit disc (with local coordinates)
- We first construct vectors in H corresponding to algebra elements $x_j \in \mathcal{A}(I_j)$ inserted at intervals in the unit disc (parametrized by I_j)

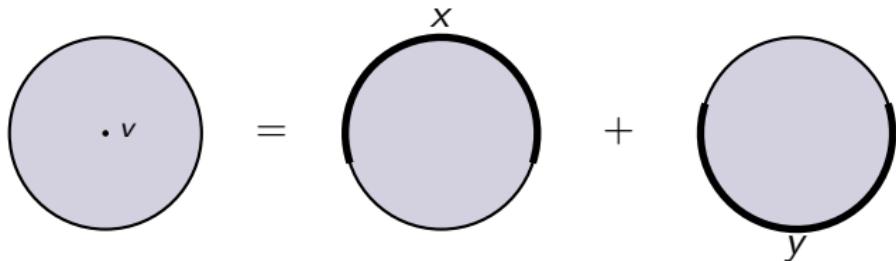


$$A_n x_{n-1} \cdots A_3 x_2 A_2 x_1 A_1 \Omega \in H$$

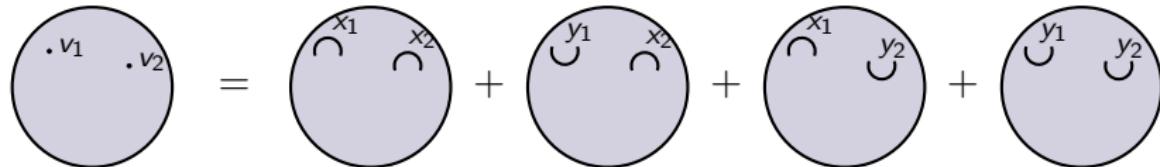
- Thin annuli are used to show that this is independent of choices.

Point insertions

- Lemma: If I and J cover S^1 , then for any $v \in V$ there exist $x \in I$ and $y \in J$ such that $v = x\Omega + y\Omega$



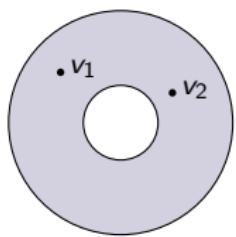
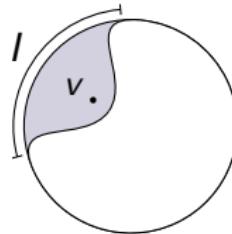
- The vector assigned to a configuration of n labelled points (v_j, z_j) is a sum of 2^n terms:



- This is again independent of choices.
- There is a lot to check, but these are the fields of a VOA.

Annuli with insertions

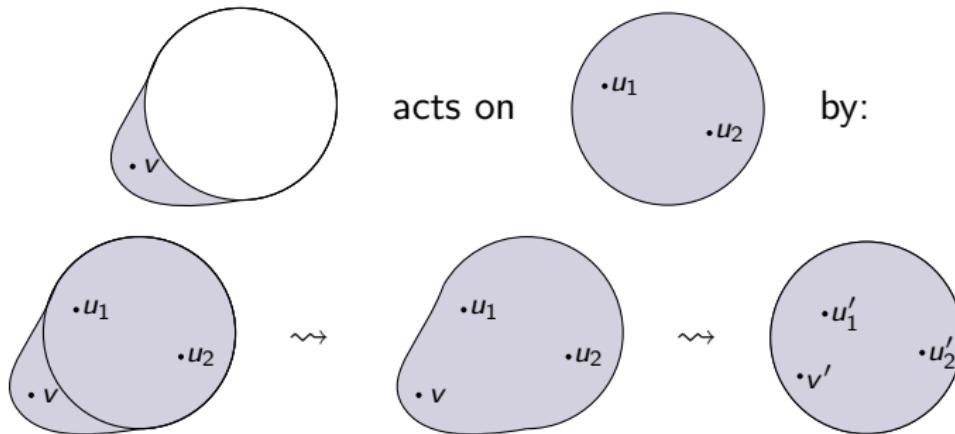
- Given a conformal net, we can assign a bounded operator $H \rightarrow H$ to an annulus with point insertions from V .
- This is first done for worms x_j , making lots of choices, and then point insertions are a sum of 2^n worm insertions.



- If the annulus is “suported in I ”, then the corresponding operator lies in $\mathcal{A}(I)$.
- The algebras $\mathcal{A}(I)$ are *generated* by these point insertions.

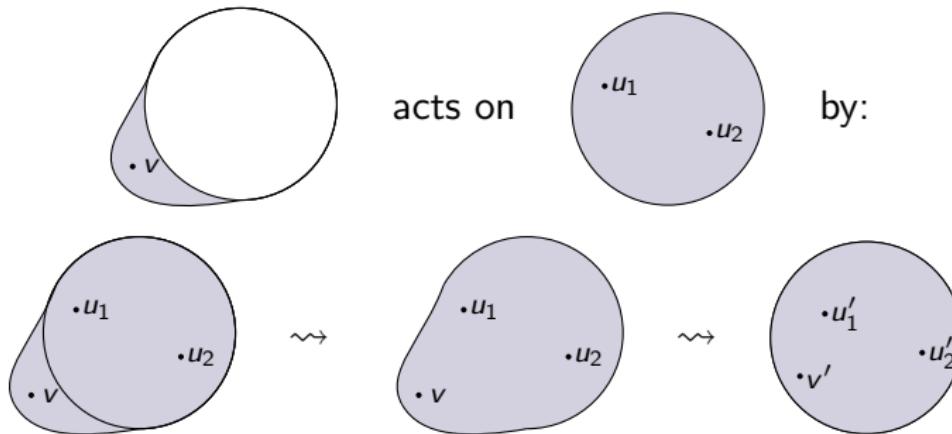
Annuli with insertions - VOA

- Starting with a unitary VOA, there is a different way to define an operator corresponding to an annulus with point insertions:



Annuli with insertions - VOA

- Starting with a unitary VOA, there is a different way to define an operator corresponding to an annulus with point insertions:



- This is only defined on linear combinations of point insertions.
- The VOA comes from a conformal net if and only if this extends to a continuous operator $H \rightarrow H$.
- In this case, the two different actions of annuli with point insertions agree.

Thank you!